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SUMMARY

The subject of `drug addiction' is multifaceted

and many aspects of it (even some of the de®ni-

tions) are controversial. Collateral medical prob-

lems include the spread of HIV and hepatitis C

virus secondary to i.v. drug abuse and effects on

prenatal brain development (1). Progress in the

understanding of the causes of addictions and its

treatment has been impeded by the lack of a

unifying biochemical theory. However, recent

evidence suggests that some common mechanism

might underlie addictions to otherwise

apparently unrelated drugs. A major hypothesis

has emerged suggesting that the neurotransmitter

dopamine (DA) might play a central role in the

molecular mechanisms of at least some addic-

tions. If so, it would represent an important target

for discovery of effective pharmacotherapy and

revolutionize the pharmacist's role in treating

addictions. This short overview outlines the sta-

tus of the theory of a common biochemical

mechanism of drug addiction.

IMPORTANCE OF THE QUESTION

Various pharmacological substances are abused.

Although individual mechanisms of action are

known for most of these substances, it is now rec-

ognized that many of them might directly or indi-

rectly modulate the same biochemical process(es)

within the brain which cause homeostatic dysregu-

lation, alter the hedonic `set-point' and activate the

biochemical `switch' that leads to chronic and det-

rimental drug abuse (`addiction'), craving and

relapse (2±4). If a common biochemical mechanism

exists, two positive outcomes might result: `addicts'

might be better treated as `patients' and suitable

pharmacotherapeutic treatment options might be

discovered that would eliminate or ameliorate the

condition (5, 6).

DEFINITIONS

It is important ®rst to de®ne what constitutes drug

`addiction' and what does not. As described by the

present Director of NIDA (National Institute on

Drug Abuse, a division of the National Institutes of

Health), drug addiction is ``¼ compulsive drug use

without medical purpose and in the face of nega-

tive consequences'' (7). Continuity of use is not part

of the de®nition, because `binge' patterns of use

should not be excluded. Likewise, physical or

psychological dependence (i.e. dysphoric with-

drawal symptoms upon cessation of use) are not

included. Although one might suspect that avoid-

ance of withdrawal symptoms might be suf®cient

motivation to continue drug use: (i) appropriate

medication can manage even the ¯orid symptoms

of heroin withdrawal and (ii) many of the most

addicting drugs, such as crack cocaine and meth-

amphetamine, do not produce dramatic with-

drawal symptoms (8). Perhaps less understood, is

that the development of `tolerance' is not part of

the de®nition. The development of `tolerance' (the

requirement of more drug in order to maintain the

same level of effect or, conversely, the progressive

decrease in a drug's apparent potency with repet-

itive use) is a pharmacological property shared by

many drugs, not only drugs of abuse. Although

tolerance is a characteristic that often accompanies

the abuse of some drugs, it does not by itself con-

stitute a determination of `addiction' or of an

`addict'. The contrary misconception is easily

Correspondence: Robert B. Raffa PhD, Temple University School

of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140,

U.S.A. Tel: +1 215 707 4976; fax: +1 215 707 5228; e-mail:

rraffa@nimbus.temple.edu

Journal of Clinical Pharmacy and Therapeutics (2000) 25, 11±20

Ó 2000 Blackwell Science Ltd 11



understandable, but just as easily dismissed when

one considers the ever-increasing amounts of

morphine that a patient with progressive cancer

requires in order to relieve the ever-increasing level

of pain. It would be incorrect to characterize such a

patient as a `drug addict'. Caffeine can be consid-

ered here as reference. Although use of the sub-

stance mirrors in many ways the use of `drugs of

abuse', the absence of obvious deleterious conse-

quences for the individual or society highlights the

importance of proper differentiation of scienti®c

description of drug-use patterns and concomitant

biochemical changes from the pattern of socially

unacceptable and harmful pattern of behaviour

that is commonly called `addiction'. Although caf-

feine is the world's most widely consumed

behaviourally active substance (9), its use is not

restricted by regulatory agencies and it is not

generally considered a drug of abuse. However,

dependence and withdrawal occur and the associ-

ated behaviour serves as a background against

which the criteria for how true drug `addiction' is

de®ned and regulatory issues are to be decided. It

is important to note that not all psychoactive sub-

stances are abused.

The Director of NIDA also argues that recent

biological research ®ndings lead to the conclusion

that drug `addiction' is different from drug `abuse'.

Speci®cally, that ``Drug use and drug addiction do

not reside together along a continuum, say, drug

use, drug abuse, a whole lot of drug abuse, and

then addiction ¼. Addiction is a qualitatively dif-

ferent state because the addicted brain is, in fact,

different in its neurobiology from the non-addicted

brain'' (7). What might at ®rst seem an extreme

position, the view that addiction is a ``brain dis-

ease'' (8), indeed a ``chronic, relapsing disorder''

set in a context of environmental, historical and

physiological factors that affect the way in which

drug use interacts with the brain (7, 8), might help

explain why relapses are common and, more

importantly, ``Elucidation of the biology underly-

ing the metaphorical switch is key to the develop-

ment of more effective treatments, particularly

anti-addiction medications'' (8).

BACKGROUND (HISTORY)

The use of mood or `mind-altering' drugs has

prevailed for thousands of years (10). Ethanol (11)

has been used for at least 8000 years, explainable in

part because it was a safe alternative to contami-

nated drinking water. The custom of chewing coca

leaves has been practised for over 1200 years.

Cannabis (marijuana) use has existed in Asia for

thousands of years and was used by the ancient

Greeks (12). Similar historical use (often associated

with religious ceremonies) applies to opium, mes-

caline (peyote), tobacco and a host of other cen-

trally active substances.

The transition from ceremonial, recreational or

even transient experimental drug use to `drug

addiction' is where the dif®culty arises for the

individual and for society. Reports of dependence

in non-addicts following a single dose (13) or

therapeutic use (14) of morphine are quite rare.

Individuals show marked differences (vulnerabili-

ty) in each aspect of drug abuse: initiation, main-

tenance, psychological and physical dependence,

craving and propensity to relapse. Each might be

in¯uenced by genetic predisposition. However, the

genetics of addictions are complex (15). Perhaps

the most clearly established genetic in¯uence is in a

particularly virulent form of alcoholism (16).

Genetic predisposition implies a biochemical basis.

POSSIBLE CONNECTIONS TO

DOPAMINE

Through extensive investigation, the biochemistry

of abused drugs is becoming more clear. Although

abused drugs alter multiple brain pathways, they

also appear to share some common effects. A pre-

vailing view is that the primary brain circuits rel-

evant to drug addiction (equated to activation of

neurochemical reward pathways) involve dopa-

minergic pathways, such as the mesolimbic dopa-

mine system (17±19). The mesolimbic dopamine

system extends from dopamine (DA)1 -containing

cell bodies within the ventral tegmental area (VTA)

in brainstem to the nucleus accumbens (NuAcc)

(part of the basal ganglia), prefrontal cortex and

dorsal striatum and reciprocal projections. The

hypothesis is that many abused substances (except

perhaps the benzodiazepines) enhance dopamine

release in either the nucleus accumbens, the pre-

frontal cortex or both (20). For example, amphet-

amine, cocaine, ethanol and nicotine all increase

the intracellular levels of dopamine in the NuAcc

and lesions of mesolimbic DA neurones attenuate
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nicotine self-administration in rats (21±24). Areas

that receive projections from the nucleus accum-

bens, such as the globus pallidus and amygdala,

are also believed to be important. In addition, other

monoaminergic nuclei, such as those in the locus

coeruleus (norepinephrine-containing cell bodies)

and raphe (5-HT containing cell bodies) are also

believed to be important (17, 25). Furthermore,

chronic use of drugs leads to the disruption of

normal homeostatic levels of neurotransmitters,

and abrupt withdrawal unmasks the compensatory

adjustments, which may explain some of the dys-

phoric aspects of withdrawal syndromes (26).

The opiates, morphine and codeine, and related

opioids such as heroin, produce their effects by

mimicking the endogenous substances b-endor-

phin and Leu- and Met-enkephalin. Opioids acti-

vate 7-transmembrane G protein-coupled receptors,

termed l, d and j (27). The l-opioid receptor

appears to be the most closely associated with drug

dependence, which has been linked to the DA

system (28±30). Cocaine, derived from `coca' (from

the Aymara word `khoka' meaning `the tree') (31),

produces multiple pharmacologic effects. It has a

local anaesthetic action and is a vasoconstrictor (as

a consequence of inhibition of neuronal reuptake of

norepinephrine). The primary mechanism of action

believed to be related to its misuse is the inhibition

of the dopamine transporter, which is responsible

for the reuptake of dopamine into the presynaptic

nerve terminal (28, 32). Inhibition of the dopamine

transporter (DA-T) increases the synaptic concen-

trations of dopamine, enabling more activation of

DA receptors. This mechanism is supported by

experiments on genetically altered mice which

have been produced without the DA-T (33). These

mice mimic the behavioural actions of cocaine

without receiving the stimulant, and show no fur-

ther changes in behaviour after cocaine adminis-

tration (32, 33). Amphetamines block monoamine

neuronal reuptake and enhance their release (34).

Although amphetamines and cocaine raise synap-

tic concentrations of the three monoamine neuro-

transmitters norepinephrine (NE), DA and 5-HT,

selective antagonists for only DA block the

rewarding effects (35, 36). Ethanol has more diffuse

and less speci®c actions than many of the other

abused substances. GABA, opioid, N-methyl-

D-aspartate (NMDA) and glycine receptors all

appear to be affected directly or indirectly by eth-

anol (37). The sedation associated with ethanol can

be attributed to enhanced GABA function (GABA

is an inhibitory amino acid neurotransmitter).

Some of the intoxicating effects of ethanol might be

related to the inhibition of the effects of glutamate

(the major excitatory amino acid in the brain) at its

NMDA receptors (38), consistent with the associa-

tion of NMDA receptors with alcohol withdrawal

syndrome after chronic use has been discontinued

(39). Opioid receptors have been implicated with

ethanol abuse because the opioid antagonist drug

naltrexone reduces the craving for alcohol and is

used to treat alcoholism (28). Barbiturates enhance

GABA function by increasing the duration of

GABA-gated Cl± in¯ux. D9-THC (D9-tetrahydro-

cannabinol), the major active constituent of Can-
nabis sativa, acts at receptors (40) for endogenous

cannabinoid (41). Two cannabinoid receptor sub-

types (CB1 and CB2) (42), have been cloned and

characterized. The CB1 subtype predominates in

the brain (43). The neural basis of the mechanism(s)

of action of abused inhalants (e.g. volatile alkyl

nitrites such as amyl nitrite, nitrous oxide and

volatile solvents, fuels and anaesthetics) is not well

understood. It is possible that some of the effects

involve smooth muscle relaxation (vasodilation),

opioid systems, DA pathways or multiple other

biochemical systems (44). The xanthines such as

caffeine, theophylline and theobromine have

multiple biochemical actions. It is presently

believed that the chief mechanism of action of

caffeine in humans is related to the blockade of G

protein-linked adenosine receptors, particularly the

adenosine A1 and A2A receptors (45). At high doses

caffeine also blocks GABAA receptors, inhibits

phosphodiesterases and increases intracellular

calcium levels (9). The predominant action of nic-

otine is as an agonist at a subclass of acetylcholine

receptors (nAChRs) located throughout the brain,

with links to DA systems (46, 47).

A COMMON PATHWAY?

Many neurotransmitter systems are altered during

chronic drug (ab)use. Dopamine appears to have a

central role, particularly in the early stages of

initiation of compulsive drug use (32, 48), as dis-

cussed below. Noradrenergic neurone activity is

decreased in certain brain regions by opioids. The

compensatory process produces a hyperadrenergic
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state, which might explain some adrenergic-

like symptoms during withdrawal and the

amelioration of some of these symptoms by drugs

such as clonidine, which inhibit the release of NE

from the presynaptic nerve terminal (25). Interac-

tions between the DA and NE systems can occur

in the nucleus accumbens and prefrontal cortex,

neuroanatomic areas thought to be important in

drug abuse (49). Changes in 5-HT systems are

believed to be involved in the changes in appetite,

in the impulsivity, and in the craving following

abstinence (25). Alterations in the nicotinic choli-

nergic receptor system follow chronic nicotine use

(50). In addition, chronic use of drugs alters the

levels of endogenous neuropeptides. In some

instances the endorphins and enkephalins are

activated, possibly explaining the therapeutic

bene®t of using the opioid antagonist naltrexone

in the treatment of alcohol dependence (51).

Chronic drug use also leads to cell molecular

adaptations, such as at2 the level of second

messenger transduction systems and protein

transcription (12). Most important to the present

review, though, is the hypothesis that many drugs

of abuse share some common biochemical path-

way(s).

NEUROCHEMICAL REWARD PATHWAY

Positive reinforcing effects are important for the

establishment of a habit or pattern of continued

drug use that might lead to drug-seeking behav-

iour (52). An anatomical pathway in the brain that

is involved with reward or reinforcement of spe-

ci®c behaviours was described in 1954 by Olds and

Milner (53). They found that rats would return to

places where they received electrical stimulation in

some brain regions, but not all. Whether or not

stimulation of such regions leads to `pleasure' is

still debated. Nevertheless, activation of these

neuronal pathways, either electrically or chemi-

cally, is unequivocally reinforcing and can main-

tain established behaviours, suggesting the concept

of an anatomical reward pathway (54). As

reviewed by Wise (49, 55), the mesolimbic dopa-

mine system, including its projections to the

nucleus accumbens, and local GABAergic affer-

ents, has been most clearly associated with the

habit-forming aspects of drugs of abuse. The evi-

dence includes: (i) lesions in the NuAcc attenuate

the rewarding effects of cocaine (56, 57) and

amphetamine (58), (ii) rats learn to lever-press for

microinjection into the NuAcc of amphetamine (59,

60), dopamine (61) and selective DA reuptake

inhibitors (62), (iii) nACh receptors on DA cells are

important for nicotine reward (24), and (iv) DA is

elevated in the NuAcc by opioids, nicotine, ethanol

and cannabis (20, 21, 63, 64). According to the

extension of these ®ndings to drug abuse, activa-

tion of reward pathways reinforces drug-seeking

behaviour, possibly to a greater extent in individ-

uals with an enhanced sensitivity or responsive-

ness to activation of the critical brain regions.

ANTI-REWARD SYSTEMS

Equally important to the overall problem are the

factors that promote continued drug use, `binge'

patterns of use and relapse. In the case of mainte-

nance, avoidance of negative reinforcement (in the

form of dysphoric affective and physical with-

drawal symptoms) plays an important, if not pre-

dominant (65), role. As reviewed by Kreek and

Koob (66), chronic drug use alters a host of

neurotransmitter (including DA) and other bio-

chemical systems. Recent work has also suggested

that protracted abstinence can change the `set

point' for hedonic processing or relieving physical

or mental discomfort (67). A prolonged reward

dysregulation occurs for all major drugs of abuse

(67). Chronic drug use also results in the recruit-

ment of systems, perhaps involving dynorphin,

neuropeptide FF or orphanin FQ, which counteract

the changes induced by the abused drugs (66).

Hence, cessation of drug-taking results in physical

and affective motivational impetus for reinstate-

ment (relapse). Drug-seeking and drug-craving

often persist despite long periods of abstinence, the

consequence of long-term neuroadaptations in

brain reward or anti-reward systems (68).

FINAL COMMON PATHWAY?

The basic research and clinical implications of a

possible ®nal common pathway involving dopa-

mine has resulted in several excellent reviews in the

scienti®c (18, 69, 70) and lay (19) press. It has also

been a framework upon which other `dependencies'

such as on caffeine, chocolate, sugar, or even gam-

bling or sex have been reevaluated (19). Recent
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research has further narrowed the focus to the

dopamine transporter (DA-T) or the brain vesicular

monoamine transporter (VMAT2). The VMAT2 is a

proton-dependent mechanism by which vesicles

accumulate monoamines (including DA and 5-HT)

from the cytoplasm. The DA-T is the protein-based

mechanism by which the dopamine that is released

into the synapse is reabsorbed into the presynaptic

nerve terminal, terminating its action (Fig. 1).

Several drugs associated with addiction affect

VMAT2 or DA-T. In addition, transgenic mice that

overexpress the DA-T have an enhanced place-

preference for locations in which cocaine was pre-

viously experienced (71). In order to separate the

role of DA transporters from other aspects of

dopamine control mechanisms, molecular biologi-

cal techniques have been applied to create mice that

selectively lack VMAT2 or DA-T. Such mice are

called `knockouts' (KO), because VMAT2 or DA-T

has been selectively knocked out, leaving other

aspects of DA processing intact (Fig. 1B). These

knock-outs offer a unique opportunity to study the

importance of VMAT2 (72, 73) and DA-T (33, 71, 74,

75) to drug `addiction'. They allow the comparison

of total (homozygous, ±/±) and partial (heterozy-

gous, +/±) knockouts to normal (`wild type', +/+)

mice. The application of this technique to drug

dependence research has recently been reviewed

(76, 77).

KNOCKOUT MICE

In the ®rst of such studies (Table 1) (33), mice made

de®cient in the DA-T were tested. In such mice,

amphetamine does not increase extracellular DA

(75). The wild-type (DA-T+/+) and heterozygous

knockout (DA-T+/±) mice responded to amphet-

amine or cocaine with the usual increase in loco-

motor activity. However, neither amphetamine nor

cocaine increased the locomotor activity of the

homozygous knockouts (DA-T±/±). Thus, there was

a possibility that the DA-T±/± mice might also be

unresponsive to the rewarding effects of amphet-

amine or cocaine. When this was tested in follow-

up studies, DA-T+/± and DA-T±/± mice established

a conditioned place-preference (preference for the

place where drug was received) for cocaine or

methylphenidate (71) and DA-T±/± mice still self-

administered cocaine (74). Hence, to some extent

the importance of the DA-T in addiction has come

into question. However, it should be pointed out

that cocaine might operate at several substrates in

addition to the DA transporter and that an increase

in extracellular DA might not be necessary and

suf®cient to maintain self-administration. Further-

more, possible compensatory adaptations in the

Fig. 1. The dopamine transporter (DA-T) provides a

reuptake mechanism (arrow) by which DA (solid circles),

released from vesicles (open circles) into the synaptic

cleft, is reabsorbed into the presynaptic nerve terminal

(A). In DA-T `knockout' animals (B), the DA within

synapses builds to higher concentrations and exerts a

greater effect on the postsynaptic DA receptors.
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KO mice might have obscured the importance of

the transporter under normal conditions. A prom-

inent role for VMAT2 was suggested by the report

(72) that VMAT2+/± mice display diminished

conditioned place-preference to amphetamine

compared to wild-type mice. In related work, the

contribution of each of the subtypes of the DA

receptor to addiction is being examined (78, 79).

NOT DOPAMINE?

In a rather surprising development, the very basis of

DA involvement in addictions has recently come

into question. It was reported recently (80) that rats

in which stimulating electrode placement elicited

DA release in the NuAcc learned to press a lever in

order to receive an intracranial electrical stimulation

(ICS), but the DA release was consistently observed

only when the stimulus was applied to an untrained

animal and not during ICS. The authors conclude

that DA might be ``¼ a neural substrate for novelty

or reward expectation rather than reward itself.''

They cite research in support of this position which

shows that DA neurones in the substantia nigra of

monkeys increase their ®ring rate when an appeti-

tive reward is delivered in an unpredictable way,

but not if a conditioned stimulus (tone) precedes the

reward. In the latter case, the rate increases not to the

reward, but rather to the tone (81).

OTHER SITES

The l opioid receptor or other sites have also been

targeted as a possible common mechanism for

addiction. For example, in l opioid receptor KO

mice, not only is morphine-induced place-prefer-

ence virtually absent, but cocaine-induced place-

preference is signi®cantly reduced (82). These data

suggest an important role for l opioid receptors in

the rewarding aspects of not only opioids, but also

of psychostimulants. Other targets include tran-

scription factors (83). Chronic exposure to drugs of

addiction desensitizes induction of the fos and jun
genes and results in a slow, but steady accumula-

tion of FRAs (Fos-related antigens). These isoforms

of DFosB (a truncated splice variant of the fosB
gene) have long half lives, build-up within the

brain, and might work as molecular switches or

triggers for drug addiction (83).

ONE PHARMACOTHERAPY?

A common mechanism of addiction might lead to

more successful pharmacotherapy. Optimism has

Table 1. Knockout mice

Ref. Knockout Results

Giros et al., 1996 (33) DA-T1 `Indifferent' to the locomotor-stimulating effects of cocaine

Caron, 1997 (73) VMAT22 Supersensitive to the locomotor-stimulating effects of apomorphine

(a dopamine agonist), amphetamine, cocaine and ethanol

Takahshi et al., 1997 (72) VMAT2(+/±) Enhanced amphetamine locomotor-stimulation; diminished

amphetamine place preference, no change in cocaine

place-preference

Jones et al., 1998 (75) DA-T No increase in extracellular DA by amphetamine

Sora et al., 1998 (71) DA-T Retain cocaine- and methylphenidate conditioned place-preference

5-HT-T3 Display an enhanced cocaine- and methylphenidiate conditioned

place-preference

Rocha et al., 1998 (74) DA-T Self-administer cocaine

Drago et al., 1998 (78) D1-DAR4 Retain cocaine-conditioned place preference

D2-DAR5 Absence of opiate rewarding effects

1 Dopamine transporter
2 Vesicular monoamine transporter 2
3 5-hydroxytryptamine (serotonin) transporter
4 Dopamine D1 receptor
5 Dopamine D2 receptor

16 C. Betz et al.
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been heightened by the recent approval by the FDA

of naloxone HCl (REVIA), an opioid antagonist, for

the treatment of alcohol dependence. In addition to

blocking the effects of opioids, naltrexone reduces

alcohol craving and relapse (84), particularly when

used as part of a comprehensive programme that

includes other treatment modalities (85±89).

Selective l and d opioid receptor antagonists also

decrease alcohol consumption in operant condi-

tioning models (90).

OVERVIEW

Recent research has raised the possibility of a

common biochemical mechanism of addiction to

drugs, other chemical substances, or behaviours.

The ®rst candidate involved the neurotransmitter

dopamine and its pathways. Speci®c targets

included dopamine's receptors and the DA-T and

VMAT2 transporters. Serotonin was also implicat-

ed early (91±93), with speci®c targets analogous to

those of DA. Recent studies cast some doubt on

whether DA or 5-HT exclusively play critical roles.

Based on ®ndings, such as those cited above, that

cocaine-induced place-preference is signi®cantly

reduced in l opioid receptor knockouts (82), the l
opioid receptor is another candidate for a ®nal

common pathway for addictions. The excitement,

and hope, of a common biochemical mechanism is

that a common pharmacotherapy might be devel-

oped. The apparent clinical effectiveness of opioid

antagonists as adjunct therapy in drug abuse

treatment paradigms lends credence to this view.
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