Andrews University

Modulation of Apoptosis in Breast Cancer Cells MDA-MB-157, 93A and 93B by Aqueous Extract of Chinese Medical Herb Scutellaria barbata.

Nathaly Manrique, Brian Y. Y. Wong, Ph. D

Department of Biology, Andrews University, Berrien Springs, MI 49104

Office of Research \& Creative Scholarship Andrews University

Abstract

Scutellaria barbata (SB), a Chinese medical herb, has been known to contain anti-cancer properties. In this study, the effectiveness of SB in apoptotic modulation of APC-mutant breast cancer cell lines MDA-MB157, 93A, and 93B was investigated. Assessments were performed using the green/red/blue fluorescent Apoptosis/Necrosis Detection Kit and the Human Apoptosis Antibody Array - Membrane (43 Targets) test by the Abcam cooperation. Our data demonstrated that 1-hour and 3-hour incubation treatments with aqueous extract of SB induced apoptosis in all cell lines. Additionally, modulation of pro-apoptotic markers (Bad, Bax,BID, BIM, C3, C8, p53, p27) and anti-apoptotic markers (BcL-2, Bcl-w, p21) was observed.

Introduction

Breast cancer cell lines MDA-MB-157 and its APC-mutants (93A and 93B) are more resistant to cancer treatment due to inhibition of APC tumor suppressor gene. SB, a Chinese herb used in traditional Chinese medicine has been known to contain biologically active phytochemicals that are known to induce apoptosis (guided multi-step pathway leading to programmed cell death). This study investigates the modulation effect of SB on these breast cancer cell lines.

Methods

- Cell cultures of breast cancer cell lines MDA-MB-157, 93A, and 93B were grown and maintained in RPIM.
- Abcam Apoptosis/Necrosis detection kit
- Each cell line was divided in three groups: negative control (distilled water), positive control ($1 \mu \mathrm{IM}$ Staurosporine) and treatment group (2 mg SB). Incubation with treatment and apoptotic markers (Apopxin green, red 7-ADD and CytoCalcein violet 450) was performed for 1 and 3 hours.
- Fluorescent microscopy pictures were used to count the number of apoptotic (green), necrotic (red) and live cells (blue) (Figure 1) Obtained data was analyzed using paired-t-test ($\mathrm{p}<0.05$).
- Abcam Human Apoptosis Antibody Array - (43) Membrane
- Each cell line was divided into a negative control group (distilled water), positive control group (Staurosporine) and treatment group (SB).
- Blocking and incubation was performed. Chemiluminescence detection was used to obtain results through X-ray films
- Densitometry software ImageJ was used to obtain spot signal densities from scanned images to perform a semi-quantitative comparison (Figure 2)
- Results were analyzed by one-way ANOVA and Tukey post hoc test.

Figure 1. Fluorescent microscopy pictures demonstrating 1 -hour and 3 -hour incubation results after reatment with 2 mg of aqueous $S B$ extract for cell lines (A) MDA-MB 157, (B) 93 A and (C) $93 B$. Blue phosphatidylserine exposure (apoptosis) and red fluorescence of the nucleus indicates loss of cell membrane (necrosis).

Expression of Pro-apoptotic Proteins in Breast Cancer 93A Cells

Pro-apoptotic proteins
Figure 3. Expression of Pro-apoptotic Proteins in APC-Mutant Breast Cancer Cell line 93A from spot signal densities obtained through Imagel software (NIH) data from Figure 2B.

Expression of Pro-apoptotic Proteins in APC-Mutant Breast Cancer Cells
MDA-MB 157 -93A -93B

Pro-apoptotic proteins

93A

93B

Figure 2. Human Apoptosis Antibody Array X-ray tilm with respective ImageJ software protein profiling analysis using color intensities to reveal spot signal densities of various apoptotic protein concentration for Breast Cancer cell lines (A) MDA-MB 157, (B) 93A and (C) 93B after
 Bim, C3, C8, cytoC, DR6, HTRA, IGFBP-5, p27, p53, TNF-B, TRAILR-1, and TRAILR-2.

Conclusion

- Fluorescent apoptosis results reveal that aqueous extract of SB induced a statistically significant percentage of apoptosis in MDA-MB- $157(46.5 \pm 7.5 \%>16 \% \pm 1.0 \%, \mathrm{p}<0.05) ; 93 \mathrm{~A}(54.5 \pm$ $2.5 \%>0 \%, \mathrm{p}<0.05$); and 93 B ($65.5 \pm 13.5 \%>0 \%, \mathrm{p}<0.05$) Similar results were obtained with 3-hour incubation
- Antibody Array Membrane results demonstrate that there was a statistically significant difference between groups in the expression of the following pro-apoptotic proteins:
- MDA-MB-157: BID $(\mathrm{p}=0.019)$ and $\operatorname{BIM}(\mathrm{p}=0.007)$
- 93A: $\operatorname{Bad}(p=0.02), \operatorname{BIM}(p=0.001), C 3(p=0.015)$ and $p 53(p=0.004)$.
$93 \mathrm{~B}: \operatorname{Bad}(\mathrm{p}=0.002), \operatorname{Bax}(\mathrm{p}=0.020), \operatorname{BID}(\mathrm{p}=0.001), \mathrm{p} 27(0.004), \mathrm{p} 53$ (0.022).
- Cell line 93A expressed the highest protein signal intensity for proapoptotic proteins with SB treatment in comparison to MDA-MB 157 and 93B.

References

 [1] Dai, Z.-.-., Lu, W.-F.. Gao, J., Kang, H.-.F., Ma, Y.-G., Zhang, S.-Q.,... Wu, W.-Y. (2013). Anti-angiogeniceffect of the total flavonoids in Scuuellaria barbata D. Don. BMC complementary and alternative medicine, 13(1), effec or
150.
${ }_{[2]}^{150 .}$ Powell, C. B., Fung, P., Jackson, J., Dall' Era, J., Lewkowicz, D., Cohen, I., \& Smith-McCune, K. (2003). Aqueous extract of herba Scutellaria barbatace, a chinese herb used for varaian cancer, induces apoptosis of ovaria cancer cell lines. Gynecologic Oncology, 91(2), 332-340. doi: 10.1016/j.ygyno.2003.07.004 31 Shoemaker, L.,. Hamilton, B., Dairkee, S. H.,. Cohen, I., \& Campbell, M.J.. (2005). In vitro anticancer activity
 [4] VanKlompenberg, zonica K. e e al. "APC selectively mediates response to c
cancer" BMC Cancer. 2015. 15:457. DOI $10.1186 / \mathrm{s} 12835-015-1456-\mathrm{x}$
cancer" BMC Cancer. 2015. 15:457. DOI 10.1186/s12885-015-1456-x [5] Wong, B. Y., Nguyen, D. L., Lin, T., Wong, H. H., Cavalcante, A., Greenberg, N. M., Hausted, R. P., \& Zheng, J. (2009). Chinese medicinal herb SCutellaria barbbata modulates apoptosis and cell survival in murine and
human rostate cancer cells and tumor development in TRAMP mice. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP), 18(4), 331-341. official journal of the European Cancer Prevention Org
http://doi.org/ $10.1097 /$ CEJ.Obol

