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The particle-particle particle-mesh Ewald method for the treatment of long-range electrostatics
under periodic boundary conditions is reviewed. The optimal Green’s function for exact �real-space
differentiation�, which differs from that for reciprocal-space differentiation, is given. Simple
analytic formulas are given to determine the optimal Ewald screening parameter given a
differentiation scheme, a real-space cutoff, a mesh spacing, and an assignment order. Simulations of
liquid water are performed to examine the effect of the accuracy of the electrostatic forces on
calculation of the static dielectric constant. A target dimensionless root-mean-square error of 10−4 is
sufficient to obtain a well-converged estimate of the dielectric constant. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2932253�

I. INTRODUCTION

Many molecular simulations use electrostatic models
given by a set of point charges at atomic sites, and are per-
formed under conditions of periodic boundary conditions.1

Although there is still debate in literature,2–4 some degree of
consensus has emerged that for such a system, the Ewald
sum is the most reliable method for minimizing artifacts due
to finite system size.5–7 In the past few decades several fast
methods have been proposed for performing the reciprocal-
space part of the Ewald sum that take advantage of the fast
Fourier transform �FFT� algorithm by discretization onto a
mesh.8–13 These methods are conceptually similar, but differ
in the particular way that charges are mapped onto the mesh,
the way that the electrostatic potential is obtained from the
mesh-based charges and the way that the potential is differ-
entiated in order to obtain the electric field and the forces.
Papers by Deserno and Holm give an excellent discussion of
the subtleties of different methods.14,15

The present work focuses on one particular set of algo-
rithms, variously called the particle-particle particle-mesh
Ewald �P3ME� method or smooth particle-mesh Ewald
method. In this method, charges are interpolated smoothly
onto mesh points. The electrostatic potential is obtained not
from the “true” Coulomb Green’s function but from a
Green’s function that is optimal �in the sense discussed be-
low� given the particular discretization scheme. Differentia-
tion may be performed either exactly in real space �by dif-
ferentiating the weight functions used to map charges onto
the mesh� or approximately in reciprocal space �by multiply-
ing the reciprocal-space potential by −ik�.

The goals of this paper are �i� to give the optimal
Green’s function for exact, real-space differentiation, which
differs from that for reciprocal-space differentiation, and
does not seem to have appeared in literature; �ii� to give

simple �fitted� formulas for the optimal Ewald screening pa-
rameter and error estimate given a differentiation scheme, a
real-space cutoff, a mesh spacing, and assignment order; and
�iii� to study the relation between the accuracy of the elec-
trostatic forces and the accuracy of a calculated physical ob-
servable, the static dielectric constant. A recent paper by Bal-
lenegger et al.16 focuses on optimal Green’s functions for
electrostatic energies; in this paper, we focus on the accuracy
of the force calculation, as that is most directly relevant for
molecular dynamics simulations.

II. THEORY

Consider a neutral system of point charges qi at locations
ri, under periodic boundary conditions defined by primitive
translation vectors a1 ,a2 ,a3. The energy of the system is
given by

U =
1

2�
i

qi��ri� , �1�

where the electrostatic potential is given by

��ri� = �
j�

�
qj

�r j − ri + ��
. �2�

Here the sum is over all lattice vectors �=n1a1+n2a2+n3a3,
where n1 ,n2 ,n3 are integers, and the prime denotes the omis-
sion of the j= i term when �=0. This sum is only condition-
ally convergent and is conventionally taken to be the limit of
a �roughly� spherical collection of neighboring boxes. The
limit depends not only on the order in which the interactions
with neighboring boxes are summed but on the medium sur-
rounding the collection of boxes. The most common choice
is to consider “tin-foil” or conducting boundary conditions,
and that is the choice adopted here.

In the Ewald method, the slowly and only conditionally
converging sum in Eq. �2� is evaluated by adding a screening
Gaussian charge distribution of opposite sign to each point
charge. The interactions between screened charges are then
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short ranged, and only neighbors within a given radius of
each screened charge need to be considered. In order to re-
cover the original potential, a canceling Gaussian charge dis-
tribution must be added as well. The potential due to this
canceling Gaussian charge distribution is evaluated in Fou-
rier space. A correction due to the interaction of a point
charge with its own Gaussian screening charge must also be
included. Using the Ewald method, the electrostatic potential
is written as a sum of a real-space term, a self-energy term,
and a reciprocal-space term, ��ri�=�real�ri�+�self�ri�
+�reciprocal�ri�, where

�real�ri� = �
j�

�qj

erfc���ri − r j + ���
�ri − r j + ��

, �3�

�self�ri� = −
2�

��
qi, �4�

�reciprocal�ri� =
1

V
�
k�0

eik·riĜk�
j

e−ik·rjqj . �5�

Here � is the width of the screening Gaussian and V
=a1 · �a2�a3� is the volume of the basic simulation box. The
reciprocal-space term is a sum over reciprocal lattice vectors
k, which are given by all linear combinations of primitive
vectors for the reciprocal lattice,

b1 =
2�

V
�a2 � a3� , �6�

b2 =
2�

V
�a3 � a1� , �7�

b3 =
2�

V
�a1 � a2� . �8�

The coefficients

Ĝk �
4�

�k�2
e−�k�2/4�2

�9�

are the Fourier coefficients for the Green’s function associ-
ated with the screening distribution �that is, the Fourier co-
efficients of the potential due to a charge distribution consist-
ing of a periodic array of Gaussians centered at lattice
vectors�.

The basic idea behind the P3M method is to discretize
the charges onto a mesh and to replace the continuous Fou-
rier transforms in Eq. �5� with discrete Fourier transforms,
which can be evaluated via the FFT algorithm. The simplest
way to generate a mesh is to take a simple cubic grid in
“crystallographic space”—that is, to choose a number of
mesh points N1 ,N2 ,N3 along each primitive lattice vector
and to take the set of points

rn �
n1

N1
a1 +

n2

N2
a2 +

n3

N3
a3. �10�

Here n= �n1 ,n2 ,n3� is a triplet of integers, each one chosen
from 0 to N1−1 ,N2−1 ,N3−1, respectively. Associated with
the lattice of mesh points is a �finite� reciprocal lattice,

kn � n1b1 + n2b2 + n3b3. �11�

The charges at each mesh point qrn
are computed from an

assignment function W�r�:

qrn
= �

i

qiW�rn − ri� . �12�

The particular form of the assignment function is discussed
below; for now, it is simply assumed that it is even and
differentiable.

Once the charges are assigned to the real-space mesh,
the Fourier coefficients of the mesh-based charge density

�̂kn
=

1

V
�
rn

e−ikn·rnqrn
�13�

may be computed via the FFT algorithm. The Fourier coef-
ficients of the mesh-based potential are then given by multi-
plying those of the charge density by those of the Green’s
function. A key idea in the P3M method is to replace the
Fourier coefficients of the actual screened Coulomb Green’s

function Ĝk= �4� / �k�2�e−�k�2/4�2
with different coefficients

Ĝkn
� , which are chosen to minimize the error resulting from

discretization,8,14 so that

�̂kn
= �

kn�0
Ĝkn

� �̂kn
. �14�

The potential on the real-space mesh is then computed from
a reverse FFT:

�rn
= �

kn

eikn·rn�̂kn
. �15�

Finally, the mesh-based potential is interpolated back to the
locations of the actual charges using the same assignment
function:

��ri� = �
rn

�rn
W�ri − rn� . �16�

The P3M reciprocal-space potential is therefore

�P3M�ri� = �
rn�

W�ri − rn��
1

V
�

kn�0
eikn·rn�Ĝkn

� �
rn

e−ikn·rn�
j

�W�rn − r j�qj , �17�

where Ĝkn
� remains to be determined.

In order to determine the forces on the particles, the
potential must be differentiated to obtain the electric field.
There are several methods by which this can be done. This
paper considers two: exact differentiation in real space using
the gradient of the assignment function, which gives

EP3M�ri� = �
rn�

− �W�ri − rn��
1

V
�

kn�0
eikn·rn�Ĝkn

�

��
rn

e−ikn·rn�
j

W�rn − r j�qj , �18�

and approximate differentiation on the reciprocal-space mesh
by multiplying the potential by ikn, which gives
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EP3M�ri� = �
rn�

W�ri − rn��
1

V
�

kn�0
eikn·rn�

��− ikn�Ĝkn
� �

rn

e−ikn·rn�
j

W�rn − r j�qj . �19�

If real-space differentiation is performed, only one reverse
FFT needs to be done. If differentiation on the reciprocal-
space mesh is used, a total of four reverse FFTs is needed:
one for the potential and one for each component of the field.

As mentioned above, the coefficients of the reciprocal-

space mesh-based Green’s function Ĝkn
are chosen to mini-

mize the error in the calculated electric field due to discreti-
zation. One estimate for this discretization error is the square
of the error in the field due to a Gaussian distribution of unit
charge, integrated over all positions within the primary unit
cell, and all positions of the distribution:8

�P3M
2 � V−2/3	

V
	

V

�EP3M�r1,r2�

− Ereciprocal�r1,r2��2d3r1d3r2. �20�

Here EP3M�r1 ,r2� and Ereciprocal�r1 ,r2� denote the electric
field at r1 due to a Gaussian distribution of total unit charge
centered at r2, calculated with P3M and with the ordinary
Ewald reciprocal-space sum, respectively. The factor of V−2/3

is chosen to make �P3M dimensionless. Equation �20� is re-

lated to the root-mean-square �rms� error in the forces for a
system of N charges qi by15

�FP3M 
��
i=1

N

qi
2�N−1/2V−2/3�P3M.

For differentiation in real space, minimizing Eq. �20� with

respect to Ĝkn
� yields

Ĝkn
� =

�MÛkn+M

2 Ĝkn+M
�kn+M�2

��MÛkn+M

2 ���MÛkn+M

2 �kn+M�2�
. �21�

For differentiation on the reciprocal-space mesh, a different
expression is obtained,

Ĝkn
� =

�MÛkn+M

2 Ĝkn+M
kn · kn+M

��MÛkn+M

2 �2�kn�2
. �22�

Equations �21� and �22� are derived in the Appendix. In these
equations,

Ûk �
N1N2N3

V
Ŵk, �23�

where

Ŵk = 	
V

e−ik·rW�r�d3r �24�

are the Fourier coefficients of the assignment function. Since
the assignment function is even, the coefficients are real and

Ŵk=Ŵ−k. M is a triplet of multiples of the number of grid-
points in each dimension; that is,

M � �m1N1,m2N2,m3N3� , �25�

where m1 ,m2 ,m3 are integers. The sums are over all such
triplets, and

kn+M � �n1 + m1N1�b1 + �n2 + m2N2�b2 + �n3 + m3N3�b3.

�26�

In practice, only a few triplets M need to be included in the

sum for each n, since Ĝk and Ûk decrease rapidly as �k�
becomes large.

It is stressed that the Green’s function coefficients yield-
ing the best accuracy in the forces will depend on the method
of differentiation. Equation �21� gives the best Green’s func-
tion coefficients in the case that differentiation is performed

TABLE I. For real-space differentiation: optimal Ewald screening parameter � given in terms of the real-space
cutoff rc and grid spacing s by the formula �=exp�a1rc

2+a2�ln s�2+a3rc�ln s�+a4rc+a5s+a6� for several assign-
ment orders and unit box length.

Assignment Order a1 a2 a3 a4 a5 a6

2 6.551 −0.031 0.209 −6.371 −0.441 2.143
3 6.012 −0.042 0.359 −5.355 −0.587 1.978
4 5.551 −0.054 0.460 −4.595 −0.728 1.694
5 5.249 −0.061 0.513 −4.113 −0.824 1.477

FIG. 1. Comparison between analytical estimate for the dimensionless rms
error in the reciprocal-space contribution to the electric field � with the
numerical rms error for a randomly distributed unit source charge and target
location in a cubic box of unit volume, �E. Circles, real-space differentia-
tion; crosses, reciprocal-space differentiation. P3M calculations were per-
formed with grid spacings ranging from 0.01 to 0.1, assignment orders from
2 to 5, and screening parameters from 4 to 32.
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in real space, while Eq. �22� gives the best Green’s function
coefficients in the case that differentiation is performed on
the reciprocal-space mesh.

The mean-square error for real-space differentiation is

�P3M
2 V2/3 = 
�

k�0
Ĝk

2�k�2�
− �

n

 ��MÛkn+M

2 Ĝkn+M
�kn+M�2�2

��MÛkn+M

2 ���MÛkn+M

2 �kn+M�2�
� , �27�

and for reciprocal-space differentiation is

�P3M
2 V2/3 = 
�

k�0
Ĝk

2�k�2�
− �

n

��MÛkn+M

2 Ĝkn+M
kn · kn+M�2

��MÛkn+M

2 �2�kn�2
� , �28�

in each case using the optimal Green’s function coefficients
for that method of differentiation.

At this point it is still necessary to specify the form of
the assignment function W�r�, which gives the fraction of
charge assigned to a grid point at a displacement r from a
charge. We use here the set of assignment functions given by
Hockney and Eastwood.8,14 To construct W�r� for arbitrary
periodic boundary conditions, an assignment function w�s� is
first considered for a one-dimensional mesh with unit spac-
ing between mesh points. A p-order assignment function
�that is, an assignment function that assigns a charge to p
mesh points� may be constructed from a p-fold convolution
of the indicator function on the interval �− 1

2 , 1
2
�:

�29�
where

1�−1/2,1/2��s� = �1 if − 1
2 	 s 	

1
2

0 otherwise.
� �30�

The Fourier transform of this assignment function is

ŵp�
� =	 wp�s�e−i
sds �31�

=� sin�
/2�

/2 �p

. �32�

The actual assignment function W�r� may then be written as
a product of the displacement along each lattice vector,
scaled by the number of gridpoints:

W�r� = w�s1�w�s2�w�s3� , �33�

where

r =
s1

N1
a1 +

s2

N2
a2 +

s3

N3
a3. �34�

Here s1 ,s2 ,s3 are dimensionless coordinates ranging from 0
to N1 ,N2 ,N3. Therefore,

Û�kn� =
N1N2N3

V
	

V

e−2�n1s1/N1e−2�n2s2/N2e−2�n3s3/N3

�w�s1�w�s2�w�s3�d3r �35�

=� sin��n1/N1�
�n1/N1

�p� sin��n2/N2�
�n2/N2

�p� sin��n3/N3�
�n3/N3

�p

. �36�

III. NUMERICAL RESULTS

The expressions for the rms error for both differentiation
methods, Eqs. �27� and �28�, were checked by comparing
with numerical calculations. Parameters were chosen such
that the accuracy of the calculations would vary over several
orders of magnitude. Results are shown in Fig. 1; close
agreement between the analytical expression and numerical
calculation is obtained.

An estimate for the rms error in the forces due to the
real-space part of the Ewald sum due to Kolafa and Perram17

is

�Freal space 
��
i=1

N

qi
2�N−1/2V−2/3�real space,

where

�real space =
2

�rcV
1/3e−�2rc

2
.

The dimensionless estimate �real space may be added to that
for the reciprocal-space forces in order to obtain a total error
estimate. The total estimate may then be minimized with
respect to the screening parameter � in order to obtain an
optimal value. This was performed for several different val-
ues of the real-space cutoff rc, grid spacing s, and assignment

TABLE II. For real-space differentiation: dimensionless rms error � for optimal � given in terms of the
real-space cutoff rc and grid spacing s by the formula �=exp�a1rc

2+a2�ln s�2+a3rc�ln s�+a4rc+a5s+a6� for
several assignment orders and unit box length.

Assignment order a1 a2 a3 a4 a5 a6

2 9.625 −0.027 0.104 −9.976 0.589 3.596
3 18.590 −0.010 0.123 −18.494 1.611 6.161
4 25.453 −0.010 0.157 −26.037 2.525 9.045
5 31.248 −0.053 0.700 −31.014 2.998 11.187
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order. The optimal screening parameters and errors using
them were fitted to a simple analytical expression, as shown
in Tables I–IV. These expressions allow one to obtain the
optimal screening parameter and associated error for a given
real-space cutoff, grid spacing, and assignment order. The
deviation between the analytic expressions and actual values
was small �on the order of a few percent� for the range of
cutoffs, spacings, and assignment orders.

In order to determine the relationship between the accu-
racy of the electrostatic forces, as given by the dimensionless
mean-square error described above, and a physical observ-
able which is fairly demanding to calculate �the static dielec-
tric constant�, several simulations of liquid water were per-
formed using the simple point charge/extended water
model.18 The system consisted of 216, 343, or 512 water
molecules, under conditions of constant volume, in a cubic
box with size chosen such that the density was 0.997 g /cm3.
Temperature was maintained at 298 K using intermittent re-
sampling of velocities from the Boltzmann distribution. Pe-
riodic boundary conditions were used with Lennard-Jones
forces and real-space electrostatic forces smoothly truncated
at 9 Å, fourth-order assignment, and grid spacings varying
from one-hundredth to one-tenth of the box size. For each
grid spacing, 18 independent simulations were run, each con-
sisting of 106 2 fs timesteps for a total duration of 36 ns. The
dielectric constant was calculated from the mean-square
value of the total system dipole moment,

� = 1 +
4�

3VkBT
�M2� .

Results are shown in Fig. 2. They indicate that a reasonable
target value for the dimensionless rms error is around 10−4

independent of system size.

IV. CONCLUSIONS

In this paper we derived the optimal Green’s function for
the particle-particle P3ME method using exact, real-space

differentiation, which differs from that for reciprocal-space
differentiation. We determined optimal values for the Ewald
screening parameter �for both methods of differentiation� for
a range of real-space cutoffs, grid spacings, and assignment
orders. These and the associated dimensionless rms errors in
the force were fitted to simple analytical forms. These ex-
pressions should be a practical tool for choosing appropriate
parameters for the Ewald calculation, given a particular sys-
tem size and target accuracy. Given that the static dielectric
constant of water exhibits strong dependence on the treat-
ment of long-range electrostatic forces,1,19 it is a good prop-
erty for determining an appropriate target accuracy for the
P3M calculation. The present simulations show that this tar-
get accuracy as given by the dimensionless rms error should
be around 10−4, independent of system size. It should be
noted that a target accuracy, which leads to good conver-
gence of the static dielectric constant for water, should be
more than accurate enough for large-scale simulations of bio-
logical molecules,20–22 which are subject to many other
sources of error, most notably due to the potential energy
function.

APPENDIX: ESTIMATES OF THE P3M
DISCRETIZATION ERROR FOR REAL-SPACE
AND RECIPROCAL-SPACE DIFFERENTIATION

The estimate for the discretization error of the P3M
method is

�P3M
2 � V−2/3	

V
	

V

�EP3M�r1,r2�

− Ereciprocal�r1,r2��2d3r1d3r2. �A1�

Here EP3M�r1 ,r2� and Ereciprocal�r1 ,r2� denote the electric
field at r1 due to a Gaussian distribution of total unit charge
centered at r2, calculated with P3M with the ordinary Ewald
reciprocal-space sum, respectively. By Parseval’s theorem,

TABLE III. For reciprocal-space differentiation: optimal Ewald screening parameter � given in terms of the
real-space cutoff rc and grid spacing s by the formula �=exp�a1rc

2+a2�ln s�2+a3rc�ln s�+a4rc+a5s+a6� for
several assignment orders and unit box length.

Assignment order a1 a2 a3 a4 a5 a6

2 5.902 −0.043 0.365 −5.238 −0.603 1.875
3 5.434 −0.055 0.473 −4.461 −0.745 1.612
4 5.101 −0.064 0.540 −3.917 −0.852 1.376
5 4.815 −0.069 0.576 −3.529 −0.925 1.200

TABLE IV. For reciprocal-space differentiation: dimensionless rms error � for optimal � given in terms of the
real-space cutoff rc and grid spacing s by the formula �=exp�a1rc

2+a2�ln s�2+a3rc�ln s�+a4rc+a5s+a6� for
several assignment orders and unit box length.

Assignment order a1 a2 a3 a4 a5 a6

2 17.483 −0.034 0.344 −16.878 1.314 5.680
3 24.524 −0.035 0.357 −24.508 2.213 8.453
4 30.505 −0.072 0.806 −29.898 2.752 10.702
5 35.825 −0.137 1.573 −33.543 2.963 12.329
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�P3M
2 = V−8/3�

k1

�
k2

�ÊP3M�k1,k2� − Êreciprocal�k1,k2��2,

�A2�

where

ÊP3M,reciprocal�k1,k2� � 	
V
	

V

EP3M,reciprocal

��r1,r2�e−ik1·r1e−ik2·r2d3r1d3r2,

�A3�

and the sums are over all reciprocal lattice vectors. The or-
dinary Ewald reciprocal-space field is given by

Ereciprocal�r1,r2� =
1

V
�
k�0

�− ik�Ĝkeik·�r1−r2�, �A4�

where Ĝk��4� / �k�2�e−�k�2/4�2
.

For differentiation in real space using the gradient of the
assignment function,

EP3M�r1,r2� = �
rn�

− �W�r1 − rn��

�
1

V
�

kn�0
eikn·rn�Ĝkn

� �
rn

e−ikn·rnW�rn − r2� .

�A5�

Therefore,

ÊP3M�k1,k2� = −
1

V
�
rn�
�	

V

� W�r1 − rn��e−ik1·r1d3r1� �
kn�0

eikn·rn�Ĝkn
� �

rn

e−ikn·rn � �	
V

W�rn − r2�e−ik2·r2d3r2�
= −

1

V
�
rn�

�ik1Ŵk1
e−ik1·rn�� �

kn�0
eikn·rn�Ĝkn

� �
rn

e−ikn·rn�Ŵk2
e−ik2·rn�

= −
1

V
ik1Ŵk1

Ŵk2 �
kn�0

Ĝkn
� ��

rn�

e−i�k1−kn�·rn����rn

e−i�kn+k2�·rn�
= − Vik1Ûk1

Ûk2 �
kn�0

Ĝkn
� �

M1

�k1−kn+M1
�
M2

�k2+kn+M2
. �A6�

Here

�k = �1 if k = 0

0 if k � 0
� �A7�

is the Kronecker delta function and M1 ,M2 are triplets of multiples of the number of gridpoints in each dimension, as in Eq.
�25�. We have made use of the identity

�
rn

ei�k−kn�·rn = �
M

�k−kn+M
,

where the first sum is over all gridpoints, and the second is over all triplets of multiples of the number of gridpoints in each
dimension.

Similarly,

Êreciprocal�k1,k2�

= −
1

V
�
k�0

ikĜk�	
V

ei�k−k1�·r1d3r1��	
V

ei�k+k2�·r2d3r2� = − V �
k�0

ikĜk�k1−k�k+k2
= − Vik1Ĝk1

�k1+k2
�1 − �k1

� . �A8�

Since

FIG. 2. Dielectric constant for liquid water � as a function of the dimen-
sionless rms error in the force, �. Circles, 216 water molecules; squares, 343
water molecules; crosses, 512 water molecules. Error bars are the standard
error of the mean taken from block averaging.
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�ÊP3M�k1,k2��2 −
1

V2�
k1

�
k2
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� �
rn

e−ikn·rnW�rn − r2� . �A14�

Therefore,
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