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Rocky Mountain Mathematics Consortium
Summer Conference
University of Wyoming

7-18 July 2003

on

Discrete Dynamical Systems
& Applications to Population Dynamics

Principle Speakers

J. M. Cushing Shandelle M. Henson
U of Arizona                     Andrews University

First week
Discrete Dynamical Systems

Second week
Applications and Case Studies

Special Speakers

R. F. Costantino Aaron King
U of Arizona                U of Tennessee

Brian Dennis
U of Idaho

First Week
Discrete Dynamical Systems

Lecture  1: Introduction (JC)
Lecture  2: Linear Maps (Henson)
Lecture  3: Linear/Nonnegative Matrix Models (JC)
Lecture  4: Nonlinear, Autonomous Maps (Henson)
Lecture  5: Local bifurcations (Henson)
Lecture  6: Nonlinear Matrix Models (JC)

Lecture  7: Periodically forced maps (Henson)
Lecture  8: Topics in Chaos I (JC)
Lecture  9: Topics in Chaos II (JC)
Lecture 10: Topics in Chaos III(?) 

and/or Multi-species Models (JC)

Second Week
Studies in Population Dynamics & Ecology

Lecture  1:  Mathematics & Biology (JC & Costantino)
Lecture  2: The LPA Model (JC)
Lecture  3:  Connecting Models to Data I  (Dennis)
Lecture  4:  Connecting Models to Data II (Dennis)
Lecture  5:  Chaos I (Costantino)
Lecture  6:  Chaos II (King)
Lecture  7:  Patterns in Chaos (King)
Lecture  8:  Competing Species (JC)
Lecture  9:  Periodic Habitats (Henson)
Lecture 10:  Periodic Habitats (Henson)
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First Week Themes

Asymptotic dynamics
Stability theory
Bifurcations
Chaos

Supplementary reading

Elementary level
James T. Sandefur, “Discrete Dynamical Systems: Theory & Applications”

Undergraduate level
Saber N. Elaydi, “Discrete Chaos”
Richard A. Holmgren, “A First Course in Discrete Dynamical Systems”

Undergraduate/Graduate level
Saber N. Elaydi, “An Introduction to Difference Equations”
H. Caswell, “Matrix Population Models: Construction, Analysis and 

Interpretation”, Second edition
Graduate level

S. Wiggins, “Intro to Applied Nonlinear Dynamical Systems and Chaos”
Guckenheimer & Holmes, “Nonlinear Oscillations, Dynamical Systems, 

and Bifurcations of Vector Fields”
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Lecture #1 A Preliminary Example
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Difference equation

0 0( ) (0)tx t a x x x= =where

Recursive formula
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0 0

:t
t Z

T R R
tx a x

∈

→

→

  For each define

by

:NOTE

map identity=0)1( T

property) group-(semiqpqp TTT =+)2(

(obvious)

( ) ( ) ( )( )0 0 0 0
p q p q p q p qT x a x a a x T T x+ += = =

DEFINITION : Let X be a set. A metric is a function 

1:

( , ) 0
( , ) ( , ) ,
( , ) ( , ) ( , ) , ,

d X X R

d x y x y
d x y d y x x y X
d x y d x z d z y x y z X

+× →

= ⇔ =
= ∀ ∈
≤ + ∀ ∈

that satisfies the three conditions :

X is called a metric space.

DEFINITION: A discrete dynamical system is a one

parameter family of continuous maps

ZtXXT t ∈=→ space, metric:

map identity=0T
satisfying

., ZqpTTT qpqp ∈=+ all for

a is  andby Replace tTZZ +  
discrete semi-dynamical system.

A difference equation (recursive formula)

defines discrete dynamical system on  X = D
(or a discrete semi-dynamical system)

( )
( )

( 1) ( )

,

:

x t f x t

x D t Z t Z

f D D
+

+ =

∈ ∈ ∈

→ =conts

or

subset of a metric space



4

Two Basic Classifications
(1) Dimension: A map

mRDDf ⊆=→ open:
defines an m - dimensional dynamical system on D.

EXAMPLE

0,0,
1

1)( ≥>
+

= cbx
cx

bxf

{ }RrRRf ∈≤=→ ++ 0:

defines an one dimensional dynamical system on R+

+∈
+

=+ Zttx
tcx

btx ),(
)(1

1)1(

EXAMPLE

1 1
1 211 121

2
2 2

1 221 22

1
1

, 0, 0
1

1

i ij

b x
c x c xx

f b c
x b x

c x c x

 
 + +    = > ≥        
 + + 

defines an two dimensional dynamical system

f : R
2  R

2  R  R

)(
)()(1

1)1(

)(
)()(1

1)1(

2
222121

21

1
212111

11

tx
txctxc

btx

tx
txctxc

btx

++
=+

++
=+

(2) Linearity:

matrixmmARh

hAxxf
m ×=∈

+=

,

)(

defines an m-dimensional linear system.

of the form: m mf R R→A map  

The system is homogeneous if h = 0.

EXAMPLE

)()1( tLxtx =+



















=

4443

33

21

4321

00
000
000

ττ
τ

τ
bbbb

L

0,0 ≥≥ ijib τ

A four dimensional system on the
"non-negative cone" R

4
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The formal theory of dynamical systems is a 
powerful and very general theory.

As we have seen “autonomous” difference equations

It is not always so obvious how to formulate non-
autonomous difference equations

define discrete dynamical systems.
))(()1( txftx =+

into the general theory

))(,()1( txtftx =+
in a useful way.

0)0(,)0(
1)()1(

))(),(()1(

0 ==
+=+

=+

yxx
tyty

txtyftx

0)0(
))(,()1(

xx
txtftx

=
=+

Rewrite the m-dimensional, non-autonomous problem

as the (m+1)-dimensional autonomous problem

Difficulty:  all orbits of this autonomous problem

are unbounded.

To formulate a problem as a dynamical 

system one typically takes advantage of

special features of the equations 

(e.g., periodicity).

We will focus on differences equations per se.

Some Basic Definitions

{ }( , ) : ( , )B x r y X d x y r= ∈ <An (open) ball :  

( , )S X x S B x r S⊂ ∈ ∃ ⊂A set  is "open" if for each 

lim ( , ) 0n nn
y

x X S X
S d x y

→∞
∃

∈ ⊂
∈ =
 is a "limit point" of  

if  such that

{ }S S X S S⊂ ∪The "closure"  of   is  all limit points of 

S X S S⊂ = is "closed" if 

S X X S X⊂ = is "dense in " if 

ASYMPTOTIC DYNAMICS
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( )0O x+A limit point of a forward orbit  

ω(x0) = {omega limit points of O+(x0)} 

is the omega limit set of the orbit.

is the omega limit point of the orbit.

{ }0 0( ) :tO x T x t Z= ∈ =

( ) { }0 0 :tO x T x t Z+ += ∈ = the forward orbit through x0

the orbit through x0
Basic Properties of Omega Limit Sets 

of bounded orbits on Rm

0( )xω ≠∅(1)  

0( )xω(3)  is closed

0( )xω(2)  is bounded

0( )xω(4)  is forward invariant

0( )xω(forward orbits of omega limit points remain in )

{ }0 0( ) :tO x a x t Z+ += ∈Forward orbits :  
0( 1) ( ), (0)x t ax t x x+ = =

EXAMPLES

( ) { }1 1(1) : 1 0
2 2

t

a O t Z ω+ +

   = ⇒ = ∈ ⇒ =  
   

(1)

{ } ( )(0) 0 {0} {0}O f= =Note :  and

( ){ } ( ) { }1 (1) 1 : 1 1, 1ta O t Z ω+ += − ⇒ = − ∈ ⇒ = −(2)  

( ){ 1,1} { 1,1}f − = −Note :

DEFINITION

A constant solution (point orbit) is called an equilibrium.

Equilibria are fixed points of f :  f(x) = x

DEFINITION

A solution satisfying  x(t + p) =  x(t) for all t  
and a (smallest) integer p > 1 is called a p -cycle

p-cycles are determined by the fixed points  
of the composite map

( )( )( )( ) ( )pf x f f f x x=
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DEFINITION: 

A X⊂A set    (a metric space) is an attractor if

( )0 0x

U A
U x Aω⇒

⊃

∈ ⊂

(b)  there is an open set  such that 
 

A(c)  no subset of   has property (a) 

( )f A A=(a)  

A is a global attractor if U = X

( ) { }0 0 0
1 1( ) : 0
2 2

t

a O x x t Z xω+ +

   = ⇒ = ∈ ⇒ =  
   

(1)

( ){ } ( ) { }1 (1) 1 : 1 1, 1ta O t Z ω+ += − ⇒ = − ∈ ⇒ = −(2)  

0( 1) ( ), (0)x t ax t x x+ = =

{ }0  A⇒ = (the equilibrium) is a global attractor

{ }1, 1A = −But  is not an attractor.

EXAMPLES

( ) ( )(2) ( ) ( )f x f f x x x= − − =

None of the 2-cycles is an attractor

0x⇒ =  all points (except ) are 2 - periodic points.

( ){ } ( ) { }0 0 0 0 0( ) 1 : ,tO x x t Z x x xω+ += − ∈ ⇒ = −

0 1 0a x< < ⇒ =the equilibrium

is a global attractor

Note : all solutions are monotonic.

__________________ 0 __________________
X0

o
X1

o
X2

o
X3

o
X4

o
X0

o
X1

o
X2

o
X3

o
X4

o

0( 1) ( ), (0)x t ax t x x+ = =

{ }0 0( ) tO x a x+ =Forward orbits :  
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__________________ 0 __________________
X0

o
X2

o
X4

o
X1

o
X3

o

Note : all solutions are oscillatory.

X5

o

1 0 0a x− < < ⇒ =the equilibrium

is a global attractor

0( 1) ( ), (0)x t ax t x x+ = =

{ }0 0( ) tO x a x+ =Forward orbits :  

__________________ 0 __________________
X4

o
X3

o
X2

o
X1

o
X0

o
X4

o
X3

o
X2

o
X1

o
X0

o

Finally …

Rxtxa t ∈∞=⇒< ∞→ 0)(lim1 all for

All solutions are unbounded.

If 1 < a, the solutions are monotonic.

If a < -1, the solutions are oscillatory.

In either case, the equilibrium x = 0 is a repellor.

__________________ 0 __________________
X5

o
X3

o
X1

o
X4

o
X2

o
X0

o

Graphical Summary:  Bifurcation Diagram

Monotone

convergent

2-cycles
Equilibria
(1-cycles)

x = 0

attractor
a10- 1

Oscillatory

convergent

x = 0

attractor

x = 0

repellor

x = 0

repellor

Monotone

unbounded

Oscillatory

unbounded

.

.

.

.
a = -1 and 1 are called bifurcation points

A Linear Application

)()()1( tdxtbxtx +=+

0 < d = fraction that survive a unit of time
0 < b = per capita recruitment rate per unit time

ttx  time at density or  numbers  population )( =

survivors  (births) trecruitmen +=+  )1(tx

0),()1( ≥+==+ dbataxtx

0 1 0  a x≤ < ⇒ = is a global attractor (extinction)  

1 0  a x< ⇒ = is a repellor (unbounded growth)

1 ( )  a x t= ⇒ = equilibrium (bounded survival)
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0 1 0  n x≤ < ⇒ = is a global attractor (extinction)  

1 0  n x< ⇒ = is a repellor (unbounded  growth)

survival)  (bounded mequilibriu )(1 extxn =⇒=

0
1

 ≥
−

=
d

bn  :Define

++++=
−

= 32

1
bdbdbdb

d
bn

equilibria

extinction unbounded growth
n

0 1

A “vertical” bifurcation diagram.

expected  per capita  number of recruits  per  lifetime

or the net reproductive number

Vertical bifurcations (point spectra) are 
typical of linear equations

Most applications involve nonlinear equations

Methods of analysis

Solution formulas         
(rare)

Geometric analysis 
(dimensionally limited)

“Qualitative” analysis

The following material was not

covered in Lecture #1
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A Nonlinear Application
Regulated Population Growth

)()()1( tdxtbxtx +=+

)()())(()1( tdxtxtxbgtx +=+

x

1 )())(()())(()1( txtxdhtxtxbgtx +=+

1)(0,1)(0 ≤≤≤≤ xhxg

Example 
(Beverton/Holt)

0,
1

1)(

  0

>
+

=

=

c
cx

xg

d s)generation goverlappin-(non

0)0(

0),(
)(1

1)1(

0 ≥=

>
+

=+

xx

btx
tcx

btx

What are the asymptotic dynamics?

Approach #1 
(Solution Formula)

)()1(01 tbxtxb ≤+≤<  then  , If

.0)(0 0 →≤≤⇒ xbtx t

.1>b   Assume
.

)(
1)(
tx

ty =  : variable Change

cby(t)b)y(t 111 −− +=+

Beverton/Holt equation transforms into a 
linear equation for  y(t).

( )1
0 1

1
) −−− −

−
+= tt b

b
cyby(t

By induction (a homework problem) : 

( )1
0

0

1)1(
)1()( −−− −+−

−
= tt bcxbb

xbtx

cbtxt /)1()(lim −=⇒ ∞→

 ( 1) /  ex b c= −
Homework problem :

Show is an equilibrium.
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survival) (bounded  mequilibriu  =→⇒> extxb )(1

Summary
n)(extinctio   0)(1 →⇒< txb

x equilibria

b
1

1
e

bx
c
−

=

attractor

attractor

repellor

repellor

Approach #2
(a geometric approach)

x(t)

x(
t+

1)

y = x

y = bx/(1 + cx)

x(t)

x(
t+

1)

y = x

y = bx/(1 + cx)

(xe,ye)

1<b 1>b

Approach #3 
(analytic)

)()1(01 tbxtxb ≤+≤<  then  , If
.0)(0 0 →≤≤⇒ xbtx t

.01 0 >> xb and   Assume

01
1

10 ><
+

< x
c

bx
cx

b   all for  

cbtxx /)(000 <<>⇒   step  one  after    for

0).  (by  below and above

  bounded and enonnegativ  are  solutions  all⇒

exx << 00

.
1

1)( xx
cx

bxf  in increasing monotone is
+

=

exx << 00

ee xxfxf =<⇒ )()( 0

induction) (by   all for txtxxx ee <⇒<⇒ )()1(

0
0 1

1/)1(
cx
bcbx
+

<⇒−<⇒

)1(
1 0

0
0 xx

cx
bx =
+

<⇒

induction) (by  increasing monotone is  )(tx⇒
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Similar kinds of arguments show

0 ( )e ex x x x t< ⇒ <   is  monotone  decreasing

CONCLUSION:   all solutions are monotonic and are     
bounded above and below. 

Thus, all solutions converge to a limit.

.0)(lim ≥= ∞∞→ xtxt

)(
)(1

1lim)1(lim tx
tcx

btx tt +
=+ ∞→∞→

∞
∞

∞ +
= x

cx
bx

1
1

cbxx e /)1(0 −==∞   or    shows algebra little A

 increasing isee xtxxx <⇒<< )(0 0

For b > 1 we showed

 decreasing is)(0 0 txxxx ee <⇒<<

ee xtxxx →⇒<< )(0 0

ee xtxxx →⇒<< )(0 0

therefore


