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Lecture 4: Connecting Models to Data IT (Dennis)

Lecture 5: Chaos I (Costantino)

Lecture 6: Chaos IT (King)
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Lecture 7: Patterns in Chaos (King)
: Competing Species (JC)
Lecture 9: Periodic Habitats (Henson)

Lecture 10: Periodic Habitats (Henson)
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Supplementary reading

Elementary level
> James T. Sandefur, "Discrete Dynamical Systems: Theory & Applications

Undergraduate level

Saber N. Elaydi, "Discrete Chaos”
Richard A. Holmgren, "A First Course in Discrete Dynamical Systems”

First Week Themes

Y VvV

» Asymptotic dynamics
> Stabi “‘I'y ‘rheor'y Undergraduate/Graduate level

. . > Saber N. Elaydi, "An Introduction to Difference Equations"
> Bifurcations > H. Caswell, "Matrix Population Models: Construction, Analysis and
Interpretation”, Second edition
> Chaos
Graduate level
> S. Wiggins, "Intro to Applied Nonlinear Dynamical Systems and Chaos”
» Guckenheimer & Holmes, "Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields"
Lecture #1 A Preliminary Example
x =vector of state variables x(t+1) = ax(?)
t= time xeR, aeR, teZ
X
x=| ! |eR"=Rx---xR where R =reals Recursive formula
x Difference equation
m
teZ={-.-2-1,01,2,-} or Z, ={0,1,2, x(f)=a'x, where x,=x(0)
(1)
x()=|
x,, (1)




For each t € Z define
T':R—>R
by x,— atxo
NOTE:
(1) T°= identity map
(obvious)
(2) TPM=T?oT? (semi-groupproperty)
T (x,)=a"""x, =a’ (aqxo) =T’ (Tq (xo))

DEFINITION : Let X be a set. A metric is a function

d:XxX >R
that satisfies the three conditions:
d(x,y)=0x=y
d(x,y)=d(y,x)Vx,ye X
d(x,y)<d(x,2)+d(z,y)V x,y,z€e X

X is called a metric space.

DEFINITION: A discrete dynamical system is a one

parameter family of continuous maps

T':X — X =metricspace, teZ
satisfying
T’ =identity map

TP =T?oT forall p,qeZ.

Replace Z by Z, and T'isa
discrete semi-dynamical system.

A difference equation (recursive formula)
x(t+1)= f(x(t))
xeD, teZ (orteZ,)

f:D—" 5 D = subset of a metric space

defines discrete dynamical system on X =D

(or a discrete semi-dynamical system)




Two Basic Classifications

(1) Dimension: A map
f:D— D=openc R"

defines an m - dimensional dynamical system on D.

EXAMPLE

f(x)=b x, b>0, ¢c>20
I+cx
fiR, >R, ={0<reR}
defines an one dimensional dynamical system on R,

X(t+1)=b

! x(@), teZ,
1+ cx(?)

EXAMPLE

b x

X, 11+c”xl+clzx2 ]
f = . » >0, ¢, 20

b, X
I+c x,+c x,
21 22

f:R2 > R2=R, xR,

defines an two dimensional dynamical system

i

t+1)=>b t
@+ luqﬁm+%%m%0
x(t+1) =b, 1 5 ()

1+ ¢ % H+ ¢ X 3]

(2) Linearity: Amap f:R"™ — R" of the form
f(x)=Ax+h

heR", A=mxmmatrix

defines an m-dimensional linear system.

The system is homogeneous if 7 = 0.

EXAMPLE
x(t+1)=Lx(¢)

b, b, b b,
Lm0 00
0 7, 0 0

0 0 7,5 74
b,20, 7,20

A four dimensional system on the
"non-negative cone" R#




The formal theory of dynamical systems is a
powerful and very general theory.

As we have seen “autonomous” difference equations

x(t+1) = f(x(®))

define discrete dynamical systems.

Tt is not always so obvious how to formulate non-
autonomous difference equations

x(t+1) = f(t,x(2))

into the general theory in a useful way.

Rewrite the m-dimensional, non-autonomous problem
x(t+1)= f(¢,x(2))
x(0) =x,
as the (m+1)-dimensional autonomous problem

x(t+1) = f(y(0),x())

v+ =y(t)+1

x(0)=x,, »(0)=0

Difficulty: all orbits of this autonomous problem

are unbounded.

To formulate a problem as a dynamical
system one typically takes advantage of
special features of the equations

(e.g., periodicity).

We will focus on differences equations per se.

ASYMPTOTIC DYNAMICS

Some Basic Definitions

An(open)ball: B(x,r)={ye X :d(x,y)<r}
Aset S c X is"open"if foreachxeS3IB(x,r)c S
x € X isa"limit point'of Sc X
if 3y, € S such that ,lqi_{gd(x’ »,)=0
The "closure" S of Sc Xis Su/{alllimit points of S}
Sc Xis"closed"if S=S
Sc Xis"densein X"if S =X




O(x,) = { T'x,:te Z} = the orbit through x,
o, (xo) = { T'x,:te Z+} = the forward orbit through x,

Alimit point of a forward orbit O, (x,)
is the omega limit point of the orbit.

w(x,) = {omega limit points of O,(xy)}
is the omega limit set of the orbit.

Basic Properties of Omega Limit Sets
of bounded orbits on R™

(1) o(x,) =<

(2) o(x,) isbounded

(3) w(x,) isclosed

(4) w(x,) is forwardinvariant

(forward orbits of omega limit points remain in w(x,))

EXAMPLES
x(t+1)=ax(t), x(0)=x,
Forwardorbits: O, (x,) = {atx0 ite Z+}

W a=1= 041):{[%) :teZ}:a)(l)z{O}
Note: 0(0)={0} and f({0})= {0}
@) a:_1:>o+(1)={(_1)%;6;}:@(1):{1,_1}

Note: f({~-L1})={-11}

DEFINITION
A constant solution (point orbit) is called an equilibrium.

Equilibria are fixed points of f/ : flx) =x

DEFINITION

A solution satisfying x(¢ + p) = x(¢) for all ¢
and a (smallest) integer p > 1 is called a p -cycle

p-cycles are determined by the fixed points
of the composite map

SO =f(f(f(x))=x




DEFINITION:

Aset Ac X (ametric space) is an attractor if

(@) f(A)=4
(b) thereis anopensetU o A such that
neU=o(x,)c 4

(c) nosubset of A4 has property (a)

A is a global attractor if U =X

EXAMPLES
x(t+1)=ax(t), x(0)=x,

(1) a =%:>0+(xo)={(%jrxo :teZ+}:>a)(x0)={0}

= A={0} (the equilibrium)is a global attractor

) a=-1=0,(1) = {(—1)% te Z+} = w(l)={1,-1}

But A={1,—1} isnot anattractor.

[P@=f(f(x0)=—(-x)=x

= allpoints (except x = 0) are 2 - periodic points.

0. (x,))= {(—l)tx0 ite Z+}: (%) ={x5,—%,}

None of the 2-cycles is an attractor

x(t+1)=ax(t), x(0)=x,
Forward orbits: O, (x,) = {a txo}

0 <a <1= theequilibrium x=0
is a global attractor

Note : all solutions are monotonic.

Xo Xi Xo X3X, Xa X3 X X, Xo
-6—0—6—6o6—0—06-06—06—6—0—




x(t+1)=ax(¢),

x(0) = x,

Forward orbits: O, (x,) = {a txo}

—1<a < 0= theequilibrium x=0

is a global attractor

Note : all solutions are oscillatory.

Finally ...
1<|a|=lim,_, |x(1)| = forall x,€R
All solutions are unbounded.
If 1 <a, the solutions are monotonic.
If a <-1, the solutions are oscillatory.
In either case, the equilibrium x =0 is a repellor.
Xe X3 X5 X Xo XoXi Xo X3 Xy
-——o6—o06—966—0—066——06—6—6—

X4 Xz Xo X1 >(3 X5
-6 6—=o6-0 —6——0 o

X, Xs X5 Xoo X, X,
o e——o0—s o ©
Graphical Summary: Bifurcation Diagram
Equilibria
2-cycles (1-cycles)
p 3
x=0 x=0 x=0 x=0
repellor 1 attractor 0 attractor 1 repellor
Oscillatory Oscillatory Monotone Monotone
unbounded convergent convergent unbounded
p p

a =-1and 1 are called bifurcation points

A Linear Application

x(t) =population numbers or density at time ¢

x(t+1) =recruitment (births) + survivors
x(t+1) =bx(¢)+dx(¢)

0 < b = per capita recruitment rate per unit time
0 < d = fraction that survive a unit of time

x(t+)=ax(t), a=b+d=0
0<a<1=x=0 isaglobal attractor (extinction)
l<a= x=0 isarepellor (unbounded growth)

a=1= x(t) = equilibrium (bounded survival)




Define : nzLZO
1-d

0<n<1= x=0 isaglobal attractor (extinction)

l<n= x=0 isarepellor (unbounded growth)

n=1=> x(t) = x, equilibrium (bounded survival)

n=——=b+bd+bd’ +bd’ +--
1-d

expected per capita number of recruits per lifetime

or the net reproductive humber

equilibria

extinction unbounded growth

A “vertical” bifurcation diagram.

Vertical bifurcations (point spectra) are
typical of linear equations

Most applications involve nonlinear equations

Methods of analysis

v Solution formulas
(rare)

v Geometric analysis
(dimensionally limited)

v" “Qualitative” analysis

=

The following material was not

covered in Lecture #1




A Nonlinear Application

Regulated Population Growth
x(t+1) =bx(¢)+dx(t)

x(t+1)=bg(x(t))x(t) + dx(¢)
x(t+1) =bg(x(2))x(t) + dh(x(1))x(t)

0<g(x)<1, 0<h(x)<L1

Example
(Beverton/Holt)

d =0 (non - overlapping generations)
1

oo’ c>0
cx

glx)=

1
0 x(t), b>0

x(t+1)=b
1+c

x(0)=x,20

What are the asymptotic dynamics?

Approach #1
(Solution Formula)

If b<l1, then 0 <x(z+1)<bx(t)

= 0<x(t)<b'x, > 0.

Assume b >1.

1
Change variable: y(t) =—.
x(2)

Beverton/Holt equation transforms into a
linear equation for y(?).

yt+1)=b"yt)+b"'c

By induction (a homework problem) :

y(t)=b"y, +ﬁ(1 —b)

(b - l)xo

(0= (b-b" +x,c1-b"")

= lim, _ x(t)=(-1)/c

Homework problem :
Show x, =(b—1)/c is an equilibrium.

10



Summary
b<1= x(t) > 0 (extinction)
b>1= x(t) = x, = equilibrium (bounded survival)

Approach #2

(a geometric approach)

x equilibria
attractor b
repellor
Approach #3
(analytic)

If b<1, then 0<x(¢+1) <bx(¢)
= 0<x(t)<b'x, > 0.

Assume b>1 and x,>0.

! x<bl forall x>0
1+ex c

= for x, >0 after one step 0<x(¢£)<b/c

= all solutions are nonnegative and bounded

0<b

above and below (by 0).

b<l1 b>1
y=x y=x
¥ =bx/1+cx)
e
3 5 (oo
£ =
y=bx/1+cx)
x(t) x(t)
f(x)=b X ismonotone increasingin Xx.
1+cx
0<x,<x,

= f(x) < f(x)=x,

= x(1) < x, = x(t) < x, forallt (byinduction)

O<x,<x,
=>x,<(b-D/c=>1<
I+cx,
=X, < x, =x(1)
1+cx,

= x(¢) is monotone increasing (by induction)

11



Similar kinds of arguments show

x, <X, = x, <x(t) is monotone decreasing

CONCLUSION: all solutions are monotonic and are
bounded above and below.
Thus, all solutions converge to a limit.

lim, ,, x(t)=x,2>0.

lim,, x(t+1)=lim,, b

t—>x

x(2)

1+ cx(?)

x,=b X,

I+cx,

Alittle algebrashows x, =0 or x, =(b-1)/c

For b>1 we showed
0 <x, <x, = x(t) < x, isincreasing
0<x, <x,= x, <x(t)is decreasing
therefore
0<x,<x,=x(t) > x,

0<x,<x,=x(t)—>x,
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