A		
1	lar	ne:

 $P = 10,000(1.8)^t$

Г)a	١ta	٦.
_ L	JC	a L C	⋾.

Algebra 1 – Topic 7 Review

Questions	WORK SPACE
Mr. Smith invested \$2,500 in a savings account that earns 3% interest compounded annually. He made no additional deposits or withdrawals. Which expression can be used to determine the number of dollars in this account at the end of 4 years? A) 2500(1 + 0.03) ⁴ B) 2500(1 + 0.04) ³ C) 2500(1 + 0.04) ³ D) 2500(1 + 0.4) ³	Exponential $y = A(d)^{\times}$ $y = 2,500(1.03)^{4}$ Growth $(1+0.03) = 1.03$
Is the equation $A = 21000(1 - 0.12)^t$ a model of exponential growth or exponential decay, and what is the rate (percent) of change per time period? A) exponential growth and 12% B) exponential growth and 88% C) exponential decay and 12% D) exponential decay and 88%	$A = 21003(1-0.12)^{t}$ $0.12 \rightarrow 127.$ d is less than 1; therefore, DECAY
The value of a car purchased for \$20,000 decreases at a rate of 12% per year. What will be the value of the car after 3 years? A) \$12,800.00 B) \$13,629.44 C) \$17,600.00 D) \$28,098.56	$y = A(d)^{\times}$ $y = 20000(1 - 0.12)^{3}$ $DECAY! y = 20000(0.88)^{3}$ $y = 20000(0.88)^{3}$
Kathy plans to purchase a car that depreciates (loses value) at a rate of (14%) per year. The initial cost of the car is $(521,000)$. Which equation represents the value, ν , of the car after 3 years? A) $\nu = 21,000(0.14)^3$ B) $\nu = 21,000(0.86)^3$ $\nu = 21,000(1.14)^3$ $\nu = 21,000(0.86)(3)$	$y = 13,629.44$ $-y = 21000(1-0.14)^{3}$ $y = 21000(0.86)^{3}$
The current population of a town is 10,000. If the population, P, increases by 20% each year, which equation could be used to find the population after t years? A) P = 10,000(0.2)! B) P = 10,000(0.8)! C) P = 10,000(1.2)! D) P = 10,000(1.8)!	$P = 10000(1+.20)^{t}$ $P = 10000(1.20)^{t}$

Questions

11. Write the function for the description below:

Parent function: $f(x) = 2^x$; translated up 5 units

f(x)+5=2x+5

- Questions
- 12. Write the function for the description below:

Parent function: $f(x) = 3^x$; up 5 units, right 3

$$f(x-3)+5=3^{x-3}+5$$

13. Identify the transformation from the parent function $f(x) = 2^x$ to $g(x) = 2^{x-10}$

10 units to the right

14. Identify the transformation from the parent function $f(x) = 7^x$ to $g(x) = 7^x + 5$

5 units up

15. Identify the transformation from the parent function $f(x) = 2^x$ to $g(x) = 2 \cdot 2^x$

y-intercept = 1 y-intercept = 2

graph translated 1 unit up

16. Identify the transformation from the parent function $f(x) = 2^x$ to $g(x) = 3(2^{x+1}) + 2$

y-intercept = I graph went from (0,1) to (0,3) translated up 4 units than to (0,5) left I unit. and Left I unit

17. Is the function linear or exponential? Explain.

x	f(x)
1	5
2	10
3 <i>-</i>	> 15 20
4 5-	→ 25
8	40
16	80

f(x) is increasing by 4 for each increase in x by 1. 18. Identify each function as either linear or exponential. Which function is growing at a faster percent rate?

percer	it iate.		
x	f(x)	g(x)	
1	25	1 ,	19(x) 15
2 ′	50	x2 4) x4	faster
3	100	20 X	
4	200 (80	
5	400 /	×2320 / × 1	

6 800 1280

19. Identify the y-intercept:

$$f(x) = 3(2^x)$$

What is the new y-intercept of the function 4f(x)?

$$4.f(x) = 4.3(2^{x})$$

$$4.f(x) = 12(2^{x})$$

$$1$$
21. Identify the y-intercept:
$$f(x) = 10.8^{x}$$

Identify the y-intercept:
$$f(x) = 10 \cdot 8^{x}$$

What is the new y-intercept of the function $\frac{1}{2}f(x)$?

23. Is the situation linear or exponential? Explain your answer.

Days	Amount Saved	GT
	(in dollars)	- 7
1	725	
2	765	-40 TLIV
73	805	40
4	845	40
5	885	10

25. What is the average rate of change (slope) for the function $f(x) = 3^x$ over the interval [-2,2]?

$$f(-2) = 3^{-2}$$
 $f(-2) = 3^{-2}$
 $f(-2) = 3^{-2}$
 $f(-2) = 3^{-2}$
 $f(-2) = 9$
 $(-2, \frac{1}{9})$
 $(2, 9)$

20. Identify the y-intercept:

$$f(x) = 3^{x}$$

What is the new y-intercept of the function 2f(x)?

22. Identify the y-intercept:

$$f(x) = 4(2^x)$$

What is the new y-intercept of the function 2f(x)?

$$2 \cdot f(x) = 2 \cdot 4(2^{x})$$

 $2 \cdot f(x) = 8(2^{x})$
 $y - int = 8$

24. When will f(x) be less than 1.5 grams?

Days	Mass	
100	(in grams)	
, 0	50	1
12	25	172 DAYS
12	25	110000
24	12.5	
in t)>2	
36	6.25	
	> 2	telon non a ter talker. Talk
48	3.125	
48	1.5625	. (0)\
72	0.78125	into the second

26. What is the average rate of change for the function

$$f(x) = (\frac{1}{4})^x$$
 over the interval [-2,3]

$$5\log = \frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - \frac{1}{9}}{2 - (-2)} = \frac{\frac{81}{9} - \frac{1}{9}}{2 + 2} = \frac{\frac{80}{9}}{4} = \frac{\frac{80}{9}}{9} \cdot \frac{1}{4} = \frac{\frac{80}{9}}{36} = \boxed{2.22}$$