Precalculus by Richard Wright
Whoever loves money never has enough; whoever loves wealth is never satisfied with their income. This too is meaningless. Ecclesiastes 5:10 NIV
Summary: In this section, you will:
SDA NAD Content Standards (2018): PC.5.1
The length of a shadow can be calculated from a complex trigonometric function based on the angle of elevation of the sun. Trigonometric identities can be used to simplify the function.
To verify trigonometric identities, use the fundamental identities to simplify one side of the identity to make it look like the other side of the equation.
Verify (1 − tan α)(1 + tan α) = 2 − sec2 α.
Solution
The left side is more complicated, so start with that side.
(1 − tan α)(1 + tan α) = 2 − sec2 α
Multiply.
1 − tan2 α = 2 − sec2 α
Pythagorean identity tan2 u + 1 = sec2 u solved for tangent tan2 u = sec2 u − 1.
1 − (sec2 α − 1) = 2 − sec2 α
Simplify.
2 − sec2 α = 2 − sec2 α
Graph both sides of the identity on the same coordinate plane. The graphs will be identical if it is an identity.
Verify sin2 x − sin4 x = cos2 x − cos4 x
Solution
Both sides are equally complicated, so either side will be a good starting point. Let’s start with the right side.
sin2 x − sin4 x = cos2 x − cos4 x
Factor out cos2 x.
sin2 x − sin4 x = cos2 x(1 − cos2 x)
Use the Pythagorean identity (sin2 u + cos2 u = 1) solved for cos2 u (cos2 u = 1 − sin2 u).
sin2 x − sin4 x = (1 − sin2 x)(1 − (1 − sin2 x))
Simplify.
sin2 x − sin4 x = (1 − sin2 x)(sin2 x)
Multiply.
sin2 x − sin4 x = sin2 x − sin4 x
Verify tan4 x − sec4 x = −1 − 2 tan2 x.
Answer
Answers will very.
Verify \(\frac{\tan^2 x}{\sec x} = \sec x - \cos x\).
Solution
Left side will be easier to work with.
$$\frac{\tan^2 x}{\sec x} = \sec x - \cos x$$
Use the Pythagorean identity (1 + tan2 u = sec2 u) solved for tan2 u (tan2 u = sec2 u − 1).
$$\frac{\textcolor{blue}{\sec^2 x - 1}}{\sec x} = \sec x - \cos x$$
Separate the fraction into two fractions.
$$\frac{\textcolor{red}{\sec^2 x}}{\sec x} - \frac{\textcolor{red}{1}}{\sec x} = \sec x - \cos x$$
Simplify the fractions and \(\frac{1}{\sec x} = \cos x\).
sec x − cos x = sec x − cos x
Verify \(\frac{1}{\csc x\cot x} = \sec x - \cos x\).
Solution
The left is slightly more complicated, so start there.
$$\frac{1}{\csc x\cot x} = \sec x - \cos x$$
Since the fraction is \(\frac{1}{something}\) it looks like a reciprocal. Use the reciprocal identities.
sin x tan x = sec x − cos x
An identity that relates tangent and sine is \(\tan u = \frac{\sin u}{\cos u}\).
$$\sin x \textcolor{red}{\frac{\sin x}{\cos x}} = \sec x - \cos x$$
$$\frac{\textcolor{red}{\sin^2 x}}{\cos x} = \sec x - \cos x$$
Use the Pythagorean identity sin2 u + cos2 u = 1 to substitute for sin2 x.
$$\frac{\textcolor{green}{1 - \cos^2 x}}{\cos x} = \sec x - \cos x$$
Separate the fraction into two fractions.
$$\frac{\textcolor{brown}{1}}{\cos x} - \frac{\textcolor{brown}{\cos^2 x}}{\cos x} = \sec x - \cos x$$
Simplify the fractions and \(\frac{1}{\cos x} = \sec x\).
sec x − cos x = sec x − cos x
Verify \(\frac{1}{\cos x \tan x} = \csc x\)
Answer
Answers will very.
Verify sin(−θ)sec(−θ) = −tan θ.
Solution
The left side will be easier to work with.
sin(−θ)sec(−θ) = −tan θ
Use the even/odd identities (sin(−u) = −sin u and sec(−u) = sec u).
−sin θ sec θ = −tan θ
Use the reciprocal identity (\(\sec u = \frac{1}{\cos u}\)) to rewrite sec θ.
$$-\sin θ \textcolor{red}{\frac{1}{\cos θ}} = -\tan θ$$
$$-\frac{\sin θ}{\cos θ} = -\tan θ$$
Use the quotient identity (\(\tan u = \frac{\sin u}{\cos u}\)).
−tan θ = −tan θ
Verify \(\frac{\sin x + \tan y}{\sin x \tan y} = \cot y + \csc x\).
Solution
Again the left side is more complex.
$$\frac{\sin x + \tan y}{\sin x \tan y} = \cot y + \csc x$$
Separate the fraction into two fractions.
$$\frac{\textcolor{blue}{\sin x}}{\sin x \tan y} + \frac{\textcolor{blue}{\tan y}}{\sin x \tan y} = \cot y + \csc x$$
Simplify.
$$\textcolor{red}{\frac{1}{\tan y}} + \textcolor{red}{\frac{1}{\sin x}} = \cot y + \csc x$$
Use reciprocal identities (\(\cot u = \frac{1}{\tan u}\) and \(\csc u = \frac{1}{\sin u}\)).
cot y + csc x = cot y + csc x
Verify \(\tan\left(\frac{π}{2} - x\right)\sin \left(-x\right) = -\cos x\).
Answer
Answers will very.
Verify \(1 - \sin^2\left(\frac{π}{2} - x\right) = \sin^2 x\) a) algebraically and b) graphically.
Solution
The left side is again the most complex.
$$1 - \sin^2\left(\frac{π}{2} - x\right) = \sin^2 x$$
Use the cofunction identity (\(\sin\left(\frac{π}{2} - u\right) = \cos u\)).
1 − cos2 x = sin2 x
Use the Pythagorean identity (sin2 u + cos2 u = 1) solve for sin2 u (sin2 u = 1 − cos2 u).
sin2 x = sin2 x
Graph the left side of the equation, then graph the right side of the equation and notice that they are the same.
Verify \(\frac{\sec x - \csc x}{\sec x \csc x} = \sin x - \cos x\) both (a) algebraically and (b) graphically.
Answers
Answers will very;
Helpful videos about this lesson.
The length, ℓ, of a shadow cast by a vertical stick of height, h, when the angle of elevation of the sun is θ can be modeled by
$$ℓ = \frac{h \cos θ}{\cos\left(90° - θ\right)}$$
Verify that ℓ = h cot θ.