Precalculus by Richard Wright

Previous Lesson Table of Contents Next Lesson

Are you not my student and
has this helped you?

This book is available
to download as an epub.


Pride brings a person low, but the lowly in spirit gain honor. Proverbs 29:23 NIV

5-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers. On this assignment round your answers to three decimal places unless otherwise directed.

  1. If tan x = 1 and cos x < 0, find sin x.
  2. Simplify (tan2 x + 1)(cot2 x + 1).
  3. Simplify sec x − sec x sin2 x.
  4. Solve on the interval [0, 2π): sec2 x = 1 + tan x.
  5. Verify the identity.
  6. \(\cot x = \frac{\csc x \sec x}{1 + \tan^2 x}\)
  7. cos(x − π) = −cos x
  8. \(\sec\left(x - \frac{π}{2}\right)\cos\left(-x\right) = \cot x\)
  9. sin x sin 2x = 2 cos x − 2 cos3 x
  10. Use a power reducing formula to rewrite the following in terms of the first power of cosine: sin4 x.
  11. If \(\sin x = \frac{\sqrt{3}}{2}\) and \(0 < x ≤ \frac{π}{2}\), find \(\tan \frac{x}{2}\).
  12. If \(\sin α = \frac{40}{41}\) and \(\frac{π}{2} < α < π\), find tan 2α.
  13. Write cos 3x − cos 2x as a product.
  14. Write cos 3x sin 2x as a sum or difference.
  15. Solve on the interval [0, 2π).
  16. cos 3x + cos x = 0
  17. sin 2x sec x = 2 sin 2x
  18. \(2 \cos x + \sqrt{3} = 0\)
  19. \(3 \tan 2x = \sqrt{3}\)
  20. 2 cos2 x + 3 cos x + 1 = 0
  21. Use a graphing utility to approximate the solutions of tan x + cos x = 0 on the interval [0, 2π). Round to 4 decimal places.
  22. Find the exact value of tan 345° given that 345 = 135 + 210.
  23. A baseball leaves the hand of the person at first base at an angle of α with the horizontal and at an initial velocity of v0 = 30 meters per second. The ball is caught by another person 20 meters away. Find α if the range, r, of a projectile is \(r = \frac{1}{32} v_0^2 \sin 2α\). Use degrees.

Answers

  1. \(-\frac{\sqrt{2}}{2}\)
  2. sec2 x csc2 x
  3. cos x
  4. \(0, \frac{π}{4}, π, \frac{5π}{4}\)
  5. \(\cot x = \frac{\csc x}{\sec x}\) \(= \frac{\csc x \sec x}{\sec^2 x}\) \(= \frac{\csc x \sec x}{1 + \tan^2 x}\)
  6. \(\cos\left(x - π\right)\) \(= \cos x \cos π + \sin x \sin π\) \(= -\cos x\)
  7. \(\sec\left(x - \frac{π}{2}\right)\cos\left(-x\right)\) \(= \csc x \left(\cos x\right)\) \(= \frac{\cos x}{\sin x}\) \(= \cot x\)
  8. \(\sin x \sin 2x\) \(= 2 \sin x \cos x \sin x\) \(= 2 \sin^2 x \cos x\) \(= 2\left(1 - \cos^2 x\right) \cos x\) \(= 2 \cos x - 2 \cos^3 x\)
  9. \(\frac{3 - 4 \cos 2x + \cos 4x}{8}\)
  10. \(\frac{\sqrt{3}}{3}\)
  11. \(\frac{720}{1519}\)
  12. \(-2 \sin \frac{5x}{2} \sin \frac{x}{2}\)
  13. \(\frac{1}{2} \left(\sin 5x - \sin x\right)\)
  14. \(\frac{π}{4}\), \(\frac{π}{2}\), \(\frac{3π}{4}\), \(\frac{5π}{4}\), \(\frac{3π}{2}\), \(\frac{7π}{4}\)
  15. 0, \(\frac{π}{3}\), \(\frac{5π}{3}\), π
  16. \(\frac{5π}{6}\), \(\frac{7π}{6}\)
  17. \(\frac{π}{12}\), \(\frac{7π}{12}\), \(\frac{13π}{12}\), \(\frac{19π}{12}\)
  18. \(\frac{2π}{3}\), π, \(\frac{4π}{3}\)
  19. 3.8078, 5.6169
  20. \(-2 + \sqrt{3}\)
  21. 22.7°, 67.3°