Precalculus by Richard Wright

Previous Lesson Table of Contents Next Lesson

Are you not my student and
has this helped you?

This book is available
to download as an epub.


He heals the brokenhearted and binds up their wounds. Psalms 147:3 NIV

10-06 Binomial Theorem

Mr. Wright teaches the lesson.

Summary: In this section, you will:

SDA NAD Content Standards (2018): PC.6.4, PC.7.2

Yanghui triangle
Yanghui's triangle. (wikimedia)

A binomial expression is two terms such as x + y. You already know how to work with binomials including how to calculate exponents of binomials by multiplying the binomial by itself. However, calculating higher exponents of binomials can be long and tedious. The binomial theorem is a shortcut to expand exponents of binomials.

The first 6 powers of (x + y)n are given in the triangle below. The plus signs + between the terms have been removed to simplify the diagram. The coefficients make a triangle called Pascal's Triangle. Blaise Pascal wrote a treatise on the triangle in 1654. However, it was first known in Persia by Al-Karaji and China by Yang Hui around 1000 AD. It is created by adding the two upper numbers to get the one below. Such as the 3 + 3 in the n = 3 row give the 6 in the n = 4 row.

$$ \begin{array}{lcr} (x + y)^0 & 1 & n = 0 \\ (x + y)^1 & 1x \quad 1y & n = 1 \\ (x + y)^2 & 1x^2 \quad 2xy \quad 1y^2 & n = 2 \\ (x + y)^3 & 1x^3 \quad 3x^2y \quad 3xy^2 \quad 1y^3 & n = 3 \\ (x + y)^4 & 1x^4 \quad 4x^3y \quad 6x^2y^2 \quad 4xy^3 \quad 1y^4 & n = 4 \\ (x + y)^5 & 1x^5 \quad 5x^4y \quad 10 x^3y^2 \quad 10 x^2y^3 \quad 5xy^4 \quad 1y^5 & n = 5 \\ & \nearrow \qquad \nearrow \qquad \nearrow \quad \qquad \nearrow \qquad \nearrow \qquad \nearrow \quad & \\ & r=0 \quad r=1 \quad r=2 \quad r=3 \quad r=4 \quad r=5 \quad & \end{array} $$

Pascal's Triangle creation
Create Pascal's Triangle by adding the two numbers above to get the one below. (wikimedia)

Notice there are some patterns in the triangle.

  1. Each row has n + 1 terms.
  2. In each row the powers of x count down and the powers of y count up.
  3. In each term, the sum of the exponents = n.
  4. The coefficients in each row are symmetrical. These are called combinations, nCr.

Combinations

The binomial coefficients, or combinations, are calculated by \(_nC_r = \frac{n!}{(n-r)!r!}\). This can also be represented \(\left(\begin{matrix} n \\ r \end{matrix}\right)\). Most calculators have a combination function built in.

Binomial Coefficient, or Combination

$$ _nC_r = \frac{n!}{(n-r)!r!} $$

Or another notation.

$$ \left(\begin{matrix} n \\ r \end{matrix}\right) = \frac{n!}{(n-r)!r!} $$

Combinations on TI-84
  1. Enter the value of n
  2. Press »
  3. Use the arrow pad to move to the PRB menu
  4. Go down to select the nCr
  5. Enter the value of r
  6. Press Í

Entered as

n nCr r

Combinations on NumWorks
  1. Select Calculation from the home screen
  2. Press the T button
  3. Go down and select the Probability menu
  4. Select Combinatorics
  5. Select \(\left(\begin{matrix}\text{n} \\ \text{k}\end{matrix}\right)\)
  6. Enter the value of n on top and the value of r on the bottom
  7. Press X

Entered as

\(\left(\begin{matrix}\text{n} \\ \text{r}\end{matrix}\right)\)

Evaluate a Combination

Evaluate 6C3.

Solution

You can either use the formula or the button on the calculator. First the formula. n = 6, r = 3

$$ _nC_r = \frac{n!}{(n-r)!r!} $$

$$ _6C_3 = \frac{6!}{(6-3)!3!} = 20 $$

You might rather use the calculator function.

On a TI-84, type

¸ nCr  Í

On a NumWorks, input

$$ \left(\begin{matrix} 6 \\ 3 \end{matrix}\right) $$

The output is 20.

Evaluate Combinations

Evaluate (a) \(\left(\begin{matrix} 12 \\ 7 \end{matrix}\right)\) and (b) \(\left(\begin{matrix} 5 \\ 2 \end{matrix}\right)\)

Solutions

  1. $$ \left(\begin{matrix} 12 \\ 7 \end{matrix}\right) =\ _{12}C_7 = 792 $$
  2. $$ \left(\begin{matrix} 5 \\ 2 \end{matrix}\right) =\ _5C_2 = 10 $$

Evaluate (a) 13C10 and (b) \(\left(\begin{matrix} 8 \\ 1 \end{matrix}\right)\)

Answers

286; 8

Binomial Theorem

The binomial theorem is a shortcut for expanding powers of binomials.

Binomial Theorem

$$ (a + b)^n = \sum_{r=0}^n \ _nC_r a^{n-r} b^r $$

  1. Plug in the a, b, and n. r starts at 0 and increases each term until r = n.
  2. Simplify each coefficient and exponent.
  3. Simplify each term.

Expand a Binomial

Expand (x + 3)4.

Solution

Compare (x + 3)4 to (a + b)n to see that a = x, b = 3, n = 4. Fill in the binomial theorem with r starting at 0.

$$ \sum_{r=0}^n \ _nC_r a^{n-r} b^r $$

4C0x4−030 + 4C1x4−131 + 4C2x4−232 + 4C3x4−333 + 4C4x4−434

x4·1 + x3·3 + x2·9 + x1·27 + x0·81

x4 + 12x3 + 54x2 + 108x + 81

Expand a binomial

Expand (2 − x3)5.

Solution

Compare (2 − x3)5 to (a + b)n\) to see that a = 2, b = −x3, n = 5. Fill in the binomial theorem with r starting at 0.

$$ \sum_{r=0}^n \ _nC_r a^{n-r} b^r $$

5C025−0(−x3)0 + 5C125−1(−x3)1 + 5C225−2(−x3)2 + 5C325−3(−x3)3 + 5C425−4(−x3)4 + 5C525−5(−x3)5

1·32·1 + 5·16·(−x3) + 10·8·(x6) + 10·4·(−x9) + 5·2·(x12) + 1·1·(−x15)

32 − 80x3 + 80x6 − 40x9 + 10x12 x15

Expand (2x + 3)3.

Answer

8x3 + 36x2 + 54x + 27

Find a Binomial Coefficient

Find the coefficient of the term x5y3 in the expansion of (3x − 2y)8.

Solution

Use the binomial theorem to find the coefficients. a = 3x, b = −2y, n = 8 Because only one coefficient is needed, only one value of r is required. The binomial theorem for each term is

nCranrbr

Compare this to the desired term x5y3, the exponent of the y should be the same as the exponent of the b part of the formula. Thus r = 3 and we only have to work through the one term.

8C3(3x)8−3(−2y)3

56(243x5)(−8y3)

−108864x5y3

The coefficient of the x5y3 is –108864.

Find the coefficient of the term x4y6 in the expansion of (x − 5y)10.

Answer

3281250

Lesson Summary

Binomial Coefficient, or Combination

$$ _nC_r = \frac{n!}{(n-r)!r!} $$

Or another notation.

$$ \left(\begin{matrix} n \\ r \end{matrix}\right) = \frac{n!}{(n-r)!r!} $$


Combinations on TI-84
  1. Enter the value of n
  2. Press »
  3. Use the arrow pad to move to the PRB menu
  4. Go down to select the nCr
  5. Enter the value of r
  6. Press Í

Entered as

n nCr r

Combinations on NumWorks
  1. Select Calculation from the home screen
  2. Press the T button
  3. Go down and select the Probability menu
  4. Select Combinatorics
  5. Select \(\left(\begin{matrix}\text{n} \\ \text{k}\end{matrix}\right)\)
  6. Enter the value of n on top and the value of r on the bottom
  7. Press X

Entered as

\(\left(\begin{matrix}\text{n} \\ \text{r}\end{matrix}\right)\)

Helpful videos about this lesson.

Practice Exercises

  1. Evaluate the combination.
  2. 3C2
  3. 6C4
  4. \(\left(\begin{matrix} 11 \\ 4 \end{matrix}\right)\)
  5. \(\left(\begin{matrix} 15 \\ 7 \end{matrix}\right)\)
  6. \(\left(\begin{matrix} 7 \\ 7 \end{matrix}\right)\)
  7. Expand the binomial.
  8. (x + 5)3
  9. (x − 3)5
  10. (2x + y)4
  11. (2x − 5y)5
  12. (3a + 7b)6
  13. Find the specific coefficient of the binomial expansion.
  14. x7 term in (x + 4)15
  15. x13y7 term in (x + y)20
  16. x3y14 term in (x − 2y)17
  17. x4y6 term in (4x − 3y)10
  18. Expand and simplify the difference quotient \(\displaystyle \frac{f(x+h)-f(x)}{h}\).
  19. f(x) = x4
  20. Mixed Review
  21. (10-05) Prove 5 + 7 + 9 + 11 + ⋯ + (2n + 3) = n(n + 4).
  22. (10-05) Prove \(1 + 3 + 9 + 27 + \cdots + (3^{n-1}) = \frac{3^n-1}{2}\).
  23. (10-04) Write the rule for the nth term: 512, 256, 128, 64, ….
  24. (10-02) Evaluate \(\displaystyle \sum_{n=1}^{10} 2n\).
  25. (10-01) Write the first five terms of the sequence \(a_{n+1} = 2a_n - 3; a_1 = 4\).

Answers

  1. 3
  2. 15
  3. 330
  4. 6435
  5. 1
  6. x3 + 15x2 + 75x + 125
  7. x5 − 15x4 + 90x3 − 270x2 + 405x − 243
  8. 16x4 + 32x3y + 24x2y2 + 8xy3 + y4
  9. 32x5 − 400x4y + 2000x3y2 − 5000x2y3 + 6250xy4 − 3125y5
  10. 729a6 + 10206a5b + 59535a4b2 + 185220a3b3 + 324135a2b4 + 302526ab5 + 117649b6
  11. 421724160
  12. 77520
  13. 11141120
  14. 39191040
  15. 4x3 + 6x2h + 4xh2 + h3
  16. Show work
  17. Show work
  18. an = 512(1/2)n−1
  19. 110
  20. 4, 5, 7, 11, 19