

- This Slideshow was developed to accompany the textbook
- Big Ideas Algebra 2
- By Larson, R., Boswell
- 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

110., 1 Rigytht Trianngylle Trieigromomneitry
- Work with a partner. In each triangle shown, the measure of θ is 30°. Use a centimeter ruler to approximate the following ratios of side lengths. What do you notice?
- opposite
hypotenuse
- $\frac{\text { adjacent }}{\text { hypotenuse }}$

See page 521 in your textbook

- opposite

- If you have a right triangle, there are six ratios of sides that are always constant
- $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
- $\csc \theta=\frac{\text { hypotenuse }}{\text { opposite }}$
- $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
- $\sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}$
- $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
- $\cot \theta=\frac{\text { adjacent }}{\text { opposite }}$

SOH
CAH
TOA

- Evaluate the six trigonometric functions of the angle θ.

- Try 526\#5

Use Pythagorean Theorem to find hypotenuse

$$
\begin{aligned}
3^{2}+4^{2} & =h y p^{2} \\
h y p & =5
\end{aligned}
$$

$\sin \theta=\frac{3}{5} \quad \cos \theta=\frac{4}{5} \quad \tan \theta=\frac{3}{4}$
$\csc \theta=\frac{5}{3} \quad \sec \theta=\frac{5}{4} \quad \cot \theta=\frac{4}{3}$
Use Pythagorean Theorem to find opposite

$$
\begin{gathered}
10^{2}+o p p^{2}=18^{2} \\
100+o p p^{2}=324 \\
o p p^{2}=224 \\
o p p=4 \sqrt{14}
\end{gathered}
$$

$\sin \theta=\frac{4 \sqrt{14}}{18}=\frac{2 \sqrt{14}}{9} \quad \cos \theta=\frac{10}{18}=\frac{5}{9}$
$\tan \theta=$
$\frac{4 \sqrt{14}}{10}=\frac{2 \sqrt{14}}{5}$
$\csc \theta=\frac{9}{2 \sqrt{14}}=\frac{9 \sqrt{14}}{28}$
$\sec \theta=\frac{9}{5}$
$\cot \theta=\frac{5}{2 \sqrt{14}}=\frac{5 \sqrt{14}}{28}$

- In a right triangle, θ is an acute angle and $\cos \theta=\frac{7}{10}$. What is $\sin \theta$?

Draw triangle and use pythagorean theorem to find opposite side

$$
\begin{gathered}
a d j=7 \\
h y p=10 \\
7^{2}+\mathrm{opp}^{2}=10^{2} \\
o p p^{2}=51 \\
o p p=\sqrt{51} \\
\sin \theta=\frac{\sqrt{51}}{10}
\end{gathered}
$$

Draw triangle and use Pythagorean theorem to find adjacent side

$$
\begin{gathered}
o p p=7, h y p=11 \\
7^{2}+a d j^{2}=11^{2} \\
49+a d j^{2}=121 \\
a d j^{2}=72 \\
a d j=6 \sqrt{2}
\end{gathered}
$$

$\sin \theta=\frac{7}{11} \quad \cos \theta=\frac{6 \sqrt{2}}{11}$ $\tan \theta=\frac{7}{6 \sqrt{2}}=\frac{7 \sqrt{2}}{12}$
$\csc \theta=\frac{11}{7} \quad \sec \theta=\frac{11}{6 \sqrt{2}}=\frac{11 \sqrt{2}}{12}$
$\cot \theta=\frac{6 \sqrt{2}}{7}$

- Special Right Triangles
- $30^{\circ}-60^{\circ}-90^{\circ}$
- $45^{\circ}-45^{\circ}-90^{\circ}$

These triangles can be used to find sin, cos, tan of 30,60, and 45 degree angles exactly.

- Use the diagram to solve the right
- $B=60^{\circ}, a=7$

$A=90^{\circ}-60^{\circ}=30^{\circ}$
From special rt triangle; $\tan 60^{\circ}=\frac{b}{7}=\frac{\sqrt{3}}{1} \rightarrow b=7 \sqrt{3}$
$\cos 60^{\circ}=\frac{7}{c}=\frac{1}{2} \rightarrow c=14$

- Use the diagram to solve the right
- $A=32^{\circ}, b=10$
- Try 526\#33
$A=43^{\circ}, b=31$

$$
B=90^{\circ}-32^{\circ}=58^{\circ}
$$

$$
\tan 32^{\circ}=\frac{a}{10} \rightarrow a=10 \tan 32^{\circ} \approx 6.25
$$

$$
\cos 32^{\circ}=\frac{10}{c} \rightarrow c \cdot \cos 32^{\circ}=10 \rightarrow c=\frac{10}{\cos 32^{\circ}} \approx 11.79
$$

\#33: $\mathrm{B}=90^{\circ}-43^{\circ}=47^{\circ}$
$\tan 43^{\circ}=\frac{a}{31} \rightarrow a=31 \tan 43^{\circ} \approx 28.91$
$\cos 43^{\circ}=\frac{31}{c} \rightarrow c \cdot \cos 43^{\circ}=31 \rightarrow c=\frac{31}{\cos 43^{\circ}} \approx 42.39$

- Find the distance between Powell Point and Widforss Point.

$$
\begin{gathered}
\cos 76^{\circ}=\frac{2 \mathrm{mi}}{y} \\
y \cdot \cos 76^{\circ}=2 \mathrm{mi} \\
y=\frac{2 \mathrm{mi}}{\cos 76^{\circ}} \approx 8.27 \mathrm{mi}
\end{gathered}
$$

\#37:

$$
\begin{gathered}
\tan 79^{\circ}=\frac{w}{100} \\
w=100 \tan 79^{\circ} \approx 514 \mathrm{~m}
\end{gathered}
$$

110. 2 Annigrlless aunidl Raidliauni Mieassunure

- Angles in Standard Position
- Vertex on origin
- Initial Side on positive x-axis
- Measured counterclockwise
$\xrightarrow[180^{\circ}]{\substack{90^{\circ} \\ \text { terminal } \\ \text { side }}}$
110.2 Annigilless aunidl Raidliauni Me:as sunure
- Coterminal Angles
- Different angles (measures) that have the same terminal side
- Found by adding or subtracting multiples of 360°

110. 2 Annigrlless aunidl Raidliauni Mieassunure

- Draw an angle with the given measure in standard position. Then find one positive coterminal angle and one negative coterminal angle.
-65 ${ }^{\circ}$
- -900°
- 300°
- Try 534\#7: - 125°

$65^{\circ}+360^{\circ}=425^{\circ} ; 65^{\circ}-360^{\circ}=-295^{\circ}$
\#3: $-900^{\circ}+360^{\circ}=-540^{\circ} ;-540^{\circ}+360^{\circ}=-180^{\circ} ;-180^{\circ}+360^{\circ}=180^{\circ}$
$300^{\circ}+360^{\circ}=660^{\circ} ; 300^{\circ}-360^{\circ}=-60^{\circ}$
\#5: $-125^{\circ}+360^{\circ}=235^{\circ} ;-125^{\circ}-360^{\circ}=-485^{\circ}$
110.2 Anngilless aunidl Raidliauni Mieassuurre
- Radian measure
- Another unit to measure angles
- 1 radian is the angle when the arc length = the radius
- There are 2π radians in a circle
110.2 Alnighlles annid \mathbb{R} ardiaun \mathbb{M}
- To convert between degrees and radians use fact that
- $180^{\circ}=\pi$
- Special angles

Probably only need to memorize $1^{\text {st }}$ quadrant
110.2 Annigilless aunidl Raidliauni Me:as suurie

- Convert the degree measure to radians, or the radian measure to degrees.
- 135°
- $\frac{5 \pi}{4}$
- -50°
- Try 534\#9
40°

$$
\begin{aligned}
& 135^{\circ}\left(\frac{\pi}{180} \circ\right)=\frac{3 \pi}{4} \\
& \frac{5 \pi}{4}\left(\frac{180^{\circ}}{\pi}\right)=225^{\circ} \\
& -50^{\circ}\left(\frac{\pi}{180}^{\circ}\right)=-\frac{5 \pi}{18}
\end{aligned}
$$

\#9

$$
40^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{2 \pi}{9}
$$

110.2 Annigilless aunidl Raidliauni Meas

- Sector
- Slice of a circle
- Arc Length
- $s=r \theta$
- θ must be in radians!
- Area of Sector
- $A=\frac{1}{2} r^{2} \theta$
- θ must be in radians!

110.2 Anngiglles aunidl Raidliauni Me:as sunure
- Find the length of the outfield fence if it is 220 ft from home plate.
- Find the area of the baseball field.

- Try 535\#29 Find the Drone Search Area

$$
\begin{gathered}
\theta=\frac{\pi}{2} \\
s=r \theta \\
s=220\left(\frac{\pi}{2}\right)=110 \pi \approx 346 \\
A=\frac{1}{2} r^{2} \theta \\
A=\frac{1}{2}(220)^{2}\left(\frac{\pi}{2}\right)=12100 \pi \approx 38013
\end{gathered}
$$

\#29
Convert to radians. $100^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{5 \pi}{9}$

$$
A=\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \theta
$$

$$
A=\frac{1}{2}(2)^{2}\left(\frac{5 \pi}{9}\right)-\frac{1}{2}(1.5)^{2}\left(\frac{5 \pi}{9}\right) \approx 1.53 m i^{2}
$$

(o) If Aluny Alungrllie

- Think of a point on the terminal side of an angle
- You can draw a right triangle with the x-axis
$\begin{array}{ll}\text { - } \sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\ \text { - } \cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\ \text { - } \tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}\end{array}$
- Unit Circle
- $r=1$

oif Aluny Aunigrlle
- Evaluate the six trigonometric functions of θ.

$$
\begin{gathered}
r^{2}=x^{2}+y^{2}=3^{2}+(-3)^{2} \\
r=\sqrt{18}=3 \sqrt{2}
\end{gathered}
$$

$\sin \theta=-\frac{3}{3 \sqrt{2}}=-\frac{\sqrt{2}}{2} \quad \cos \theta=\frac{3}{3 \sqrt{2}}=\frac{\sqrt{2}}{2} \quad \tan \theta=-\frac{3}{3}=-1$ $\csc \theta=-\sqrt{2} \quad \sec \theta=\sqrt{2} \quad \cot \theta=-1$

oiff Aunyy Alnngille

- Quadrantal Angles
- Evaluate the six trigonometric functions of θ.
- $\theta=180^{\circ}$
$\sin \theta=0 \quad \cos \theta=-1 \quad \tan \theta=0$
$\csc \theta=$ und $\quad \sec \theta=-1 \quad \cot \theta=$ und
 ooff Aunly Alungille
- Reference Angle
- Angle between terminal side and x-axis
- Has the same values for trig

This gives what is positive.
The reciprocal functions are the same (csc is with sin, etc.)
Way to remember "All Students Take Calculus"

oitf Aunly Aunigrlle

- Sketch the angle. Then find its reference angle.
- 150°
- Try 542\#15 $\frac{23 \pi}{4}$

$$
180^{\circ}-150^{\circ}=30^{\circ}
$$

\#15

$$
\begin{gathered}
\frac{23 \pi}{4}-2 \pi=\frac{15 \pi}{4} \rightarrow \frac{15 \pi}{4}-2 \pi=\frac{7 \pi}{4} \\
2 \pi-\frac{7 \pi}{4}=\frac{\pi}{4}
\end{gathered}
$$

oif Aluny Alungrlle

- Evaluate $\cos \left(-60^{\circ}\right)$ without a calculator
- Try 542\#25
$\sin \left(-150^{\circ}\right)$

Reference angle is 60°
In quadrant IV (cos positive)
Use $30^{\circ}-60^{\circ}-90^{\circ}$ triangle

$$
\cos \left(-60^{\circ}\right)=\frac{1}{2}
$$

\#25
Reference angle is 30°
In quadrant III (sin negative)
Use $30^{\circ}-60^{\circ}-90^{\circ}$

$$
\sin \left(-150^{\circ}\right)=-\sin \left(30^{\circ}\right)=-\frac{1}{2}
$$

oiff Aunyy Aungrlle

- Estimate the horizontal distance traveled by a Red Kangaroo who jumps at an angle of 8° and with an initial speed of 53 feet per second (35 mph).

$$
\begin{gathered}
d=\frac{v^{2}}{32} \sin 2 \theta \\
d=\frac{53^{2}}{32} \sin \left(2\left(8^{\circ}\right)\right)=24.2 f t
\end{gathered}
$$

110.4 Grraplphiung- Siimie annd Coosiune FFumictioons

- Work with a partner.

- a. Complete the table for $y=\sin x$, where x is an angle measure in radians.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$y=\sin x$									

- b. Plot the points (x, y) from part (a). Draw a smooth curve through the points to sketch the graph of $y=\sin x$. Make several observations about the graph.

110.4 Grifaplhiung Siime annd Cossiune Fiumictioms
- $y=\sin x$
- Starts at 0
- Amplitude = 1
- Period $=2 \pi$
- $y=\cos x$
- Starts at 1
- Amplitude = 1
- Period $=2 \pi$

Point out

- Amplitude
- period
- key points

- Transformations
- $y=a \sin b(x-h)+k$
- $|a|=$ amplitude $=$ vertical stretch
- If $a<0$, then reflect over x-axis
- $b=$ horizontal shrink
- Period $T=\frac{2 \pi}{|b|}$
- $h=$ horizontal shift
- $k=$ vertical shift
- Midline $y=k$
c is like h d is like k
110.4 Grifaplhiungs Siunue annd Cosiunie Fiumictioms
- Graphing sine and cosine

1. Identify the amplitude, period, horizontal shift, and vertical shift
2. Draw the midline, $y=k$
3. Find the 5 key points (3 zeros, 1 max, 1 min)

4. Draw the graph

amp: 5 ; period: 2π
\#7
Amp: 4; period: π
110.4 Grifaplhiung-Siunne aund Cosiunne Fuunctitioms

- Graph $f(x)=2 \sin x$

Same as sine, but amp = 2

- Try 551\#13

Graph $y=\sin 2 \pi x$

Period $T=\frac{2 \pi}{b}$

$$
T=\frac{2 \pi}{2 \pi}=1
$$

Amp $=1$
110.4 Grrapphiing Siinne aund Cossime FFunnctioms

- Graph $y=2 \cos \left(x-\frac{\pi}{2}\right)$

$$
\begin{gathered}
a=2 \\
b=1 \rightarrow T=2 \pi \\
h=\frac{\pi}{2} \text { to right }
\end{gathered}
$$

Draw $2 \cos x$ first and then do the phase shift
110.4 Girapphiung-Siinne aunud Cossime Fuuncteioms

- Try 552\#39

Graph

$$
g(x)=-4 \cos \left(x+\frac{\pi}{4}\right)-1
$$

$$
\begin{gathered}
a=-4=a m p \\
b=1 \rightarrow T=\frac{2 \pi}{b} \rightarrow \frac{2 \pi}{1}=2 \pi \\
h=-\frac{\pi}{4}
\end{gathered}
$$

Shift left $\pi / 4$

$$
k=-1
$$

Shift down 1
Graph $-4 \sin x$ first labeling the key points with a period of 2π
Reflect over the x-axis because a is negative
Shift left $\pi / 4$ and down 1

110.5, Girapphiung (O)there Tirigomomneitriic HFunnctionns

- Work with a partner.

- a. Complete the table for $y=\tan x$, where x is an angle measure in radians.

x	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$
$y=\tan x$								
x	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	2π
$y=\tan x$								

- b. Plot the points (x, y) from part (a). Then sketch the graph of $y=\tan x$. Make several observations about the graph.

110.5, Girapphing (Othere Tirigomomoneitric HFunctionns
- $y=\tan x$
- Period $=\pi$
- $T=\frac{\pi}{b}$
- Asymptotes where tangent undefined, $\frac{\pi}{2}, \frac{3 \pi}{2}$

110.5, Girapphiung (O) theer Tirigomomoneitric FFumictionns
- $y=\cot x$
- Period $=\pi$
- $T=\frac{\pi}{b}$
- Asymptotes at $0, \pi, 2 \pi$

110.5, Girapphiung (O)there Tirigomomoneitriic HFunnctionns
- Graph $y=\tan \frac{x}{4}$

$$
\begin{gathered}
b=\frac{1}{4} \\
T=\frac{\pi}{b}=\frac{\pi}{\frac{1}{4}}=4 \pi \\
a=1
\end{gathered}
$$

110.5, Girapphiung (O)therer Tirigromionneitreic AFumictionns

- Try 560\#7

Graph $g(x)=\frac{1}{2} \tan \pi x$

$$
T=\begin{aligned}
b & =\pi \\
\frac{\pi}{b} & =\frac{\pi}{\pi}=1 \\
a & =\frac{1}{2}
\end{aligned}
$$

110.5, Girapphiung (Othere Tirigomomoneitric HFunctionns

- $y=\csc x$
- Period $=2 \pi$
- $T=\frac{2 \pi}{b}$
- Asymptotes where sine $=0$
- $0, \pi, 2 \pi$

- $y=\sec x$
- Period $=2 \pi$
- $T=\frac{2 \pi}{b}$
- Asymptotes where cosine $=0$
- $\frac{\pi}{2}, \frac{3 \pi}{2}$

110.5, Girapphiung (O)there Tirigomomneitriic HFunnctionns
- Graph $y=2 \csc \left(x+\frac{\pi}{2}\right)$

$$
\begin{aligned}
& a=2 \\
& b=1 \\
& T=\frac{2 \pi}{b}=\frac{2 \pi}{1 \pi}=2 \pi \\
& c=-\frac{\pi}{2} \\
& \text { Horizontal shift; } h=-\frac{\pi}{2} \\
& k=0
\end{aligned}
$$

Start by graphing $2 \sin x$
Then shift left $\frac{\pi}{2}$
Then draw asymptotes at the x -intercepts
Then draw csc graph
110.5, Girapphiung (O) thenere Tiriggomomneetreic HFumictionns

- Try 560\#15

Graph $g(x)=\csc 4 x$

$$
\begin{aligned}
a & =1 \\
b & =4 \\
T=\frac{2 \pi}{b} & =\frac{2 \pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

Start by graphing $\sin 4 x$
Then draw asymptotes at the x -intercepts
Then draw csc graph

110.6. Mordelliung wwith Treigromomneetreic IFuminctions

- Trigonometric functions are periodic
- Useful for modeling oscillating motions or repeated patterns
- Period (T)
- Time of 1 cycles
- Unit: s/cycle = s
- Frequency (f)
- Cycles per 1 second

$\square=$
- Unit: cycles/s = Hz

Period and frequency are reciprocals
110.6. Mordelling wwith Therigromionnneitreic IPumictions

- Find the frequency

$$
y=2 \cos 3 x
$$

-Try 568\#3

$$
y=\sin 3 \pi x
$$

Find period.

$$
\begin{gathered}
T=\frac{2 \pi}{b}=\frac{2 \pi}{3} \\
f=\frac{1}{T}=\frac{1}{\frac{2 \pi}{3}}=\frac{3}{2 \pi}
\end{gathered}
$$

\#3

$$
\begin{gathered}
T=\frac{2 \pi}{b}=\frac{2 \pi}{3 \pi}=\frac{2}{3} \\
f=\frac{1}{T}=\frac{3}{2}
\end{gathered}
$$

- Write Trigonometric Models
- Find the midline (average of max and min)
- Find the amplitude
- Find the period
- If the situation starts at zero, use sine
- If starts increasing +
- If starts decreasing -
- If the situation starts at a maximum or minimum use cosine
- If starts at max +
- If starts at min -

- An audiometer produces a pure tone with a frequency f of 1000 hertz (cycles per second). The maximum pressure P produced by the tone is 20 millipascals. Write a sine model that gives the pressure P as a function of the time t (in seconds).

Sound is produced by compressing air

$$
\begin{gathered}
f=1000 \mathrm{~Hz} \\
T=\frac{1}{f}=\frac{2 \pi}{b}=\frac{1}{1000} \rightarrow b=2000 \pi \\
a=20 \mathrm{mPa} \\
P=20 \sin 2000 \pi t
\end{gathered}
$$

110.6. Mordelliung wwith Treigromomneetrric IFumictions

- Write a function for the sinusoid shown.

y-intercept is a max, so use cosine and $h=0$
Midline is $y=\frac{13+(-5)}{2}=4=k$
Amplitude is $13-4=9=a$
Period is $T=\frac{\pi}{4}=\frac{2 \pi}{b} \rightarrow \pi b=8 \pi \rightarrow b=8$

$$
\begin{gathered}
y=a \cos b(x-h)+k \\
y=9 \cos 8(x-0)+4 \\
y=9 \cos 8 x+4
\end{gathered}
$$

- Try 569\#11

Write a function for the sinusoid shown.

y-intercept is a 0 , so use sine and $h=0$
Midline is $y=0=k$
Amplitude is $3-0=3=a$
Period is $T=\pi=\frac{2 \pi}{b} \rightarrow \pi b=2 \pi \rightarrow b=2$

$$
\begin{gathered}
y=a \sin b(x-h)+k \\
y=3 \sin 2(x-0)+0 \\
y=3 \sin 2 x
\end{gathered}
$$

- Two people swing jump ropes. The highest point of the middle of each rope is 80 inches above the ground and the lowest point is 2 inches above the ground. Each rope makes 2 revolutions per second. Write a model for the height h (in inches) of one of the ropes as a function of the time t (in seconds) given that the rope is at its lowest point when $t=0$.

Midline: $\frac{80+2}{2}=41=k$
Amplitude: $80-41=39=a$
Frequency: $f=2=\frac{1}{T} \rightarrow T=\frac{1}{2}=\frac{2 \pi}{b} \rightarrow b=4 \pi$
Lowest point at $t=0$, so use cosine with $-a, a=-39$

$$
\begin{gathered}
y=a \cos b(x-h)+k \\
h(t)=-39 \cos 4 \pi t+41
\end{gathered}
$$

- The tables show the average monthly low temperatures D (in degrees Fahrenheit) in Erie, Pennsylvania, where $t=1$ represents January. Write a model that gives D as a function of t and interpret the period of its graph. Use technology.
- Press STAT, Edit... enter points
- Press STAT \rightarrow CALC, SinReg

t	D	t	D
1	21	7	64
2	21	8	62
3	28	9	56
4	38	10	45
5	48	11	37
6	58	12	27

Use a graphing calculator
$D=21.3 \sin (0.52 t-2.3)+42$
The period 12 makes sense because there are 12 months in a year, and you expect this pattern to continue in the years to follow.

Colored ones should be memorized.

- Given that $\sin \theta=-\frac{5}{13}$ and $\pi<\theta<\frac{3 \pi}{2}$, find the values of the other five trigonometric functions of θ.

Quadrant III, so $x<0$ and $y<0$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \rightarrow\left(-\frac{5}{13}\right)^{2}+\cos ^{2} \theta=1 \rightarrow \cos ^{2} \theta=1-\frac{25}{169}=\frac{144}{169} \rightarrow \cos \theta \\
& =-\frac{12}{13}
\end{aligned}
$$

$$
\begin{gathered}
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-\frac{5}{13}}{-\frac{12}{13}}=\frac{5}{12} \\
\csc \theta=\frac{1}{\sin \theta}=-\frac{13}{5} \\
\sec \theta=\frac{1}{\cos \theta}=-\frac{13}{12} \\
\cot \theta=\frac{1}{\tan \theta}=\frac{12}{5}
\end{gathered}
$$

- Simplify $(1+\cos \theta)(1-\cos \theta)$
-Try 575\#9
$\sin x \cot x$

$$
\begin{gathered}
(1+\cos \theta)(1-\cos \theta) \\
1-\cos ^{2} \theta
\end{gathered}
$$

(because $\sin ^{2} \theta+\cos ^{2} \theta=1$, then $\cos ^{2} \theta=1-\sin ^{2} \theta$)

$$
\begin{gathered}
1-\left(1-\sin ^{2} \theta\right) \\
\sin ^{2} \theta
\end{gathered}
$$

\#9

$$
\begin{gathered}
\sin x \cot x \\
\sin x\left(\frac{\cos x}{\sin x}\right) \\
\cos x
\end{gathered}
$$

110.7 IU Is inngr Tiritgroinommeitricic IIdlemititities

- Verify Trigonometric Identities
- Show that trig identities are true by turning one side into the other side
- Guidelines

1. Work with 1 side at a time. Start with the more complicated side.
2. Try factor, add fractions, square a binomial, etc.
3. Use fundamental identities
4. If the above doesn't work, try rewriting in sines and cosines
5. Try something!
110.7) IUlsiung Tirigigomomneutric IIdlemntitities

- Verify $\frac{\sin x}{\csc x}+\frac{\cos x}{\sec x}=1$
- Try 575\#21

$$
\cos \left(\frac{\pi}{2}-x\right) \cot x=\cos x
$$

$$
\begin{gathered}
\frac{\sin x}{\csc x}+\frac{\cos x}{\sec x}=1 \\
\frac{\sin x}{\frac{1}{\sin x}}+\frac{\cos x}{\frac{1}{\cos x}}=1 \\
\sin ^{2} x+\cos ^{2} x=1 \\
1=1
\end{gathered}
$$

\#21

$$
\begin{gathered}
\cos \left(\frac{\pi}{2}-x\right) \cot x \\
\sin x \cot x \\
\sin x\left(\frac{\cos x}{\sin x}\right) \\
\cos x
\end{gathered}
$$

