PROPERTIES OF TRANSFORMATIONS

Geometry Chapter 4

Geometry 4

- This Slideshow was developed to accompany the textbook
 - Big Ideas Geometry
 - By Larson and Boswell
 - 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy After this lesson...

- I can translate figures.
- I can write a translation rule for a given translation.
- I can explain what a rigid motion is.
- I can perform a composition of translations on a figure.

4.1 TRANSLATIONS

Can be used to describe translations

$$\overline{RS} = \langle 5,0 \rangle$$
$$\overline{TX} = \langle 0,3 \rangle$$
$$\overline{BK} = \langle -5,2 \rangle$$

- Transformation
 - Moves or changes a figure
 - Original called preimage (i.e. Δ*ABC*)
 - New called image (i.e. $\Delta A'B'C'$)
- Translation
 - Moves every point the same distance in the same direction
 - $(x, y) \rightarrow (x + a, y + b)$
 - where the $\langle a, b \rangle$ is the translation vector

• The vertices of ΔLMN are L(2, 2), M(5, 3), N(9, 1). Translate ΔLMN using vector $\langle -2, 6 \rangle$.

Translation is $(x, y) \rightarrow (x-2, y+6)$ L'(0, 8), M'(3, 9), N'(7, 7)

• Write a rule for the translation of ΔPQR to $\Delta P'Q'R'$.

 $(x, y) \rightarrow (x + 2, y - 1)$

Draw Δ*RST* with vertices *R*(2, 2), *S*(5, 2), and *T*(3, -2). Find the image of each vertex after the translation (*x*, *y*) → (*x* + 1, *y* + 2). Graph the image using prime notation.

R'(3, 4), S'(6, 4), T'(4, 0)

- Rigid Motion
 - Transformation that preserves length and angle measure.
 - A congruence transformation

Translation Theorem

A translation is a rigid motion.

- Composition of Transformations
 - Two or more transformations combined into a single transformation

Composition Theorem

The composition of two (or more) rigid motions is a rigid motion.

- Graph \overline{RS} with endpoints R(-8, 5)and S(-6, 8). Graph its image after the composition. **Translation:** $(x, y) \rightarrow (x - 1, y + 4)$ **Translation:** $(x, y) \rightarrow (x + 4, y - 6)$
- 172 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32, 42, 43, 44, 48, 52

Translation 1: $(x, y) \rightarrow (x - 1, y + 4)$ R(-8, 5) \rightarrow R'(-8 - 1, 5 + 4)= R'(-9, 9) S(-6, 8) \rightarrow S'(-6 - 1, 8 + 4) = S'(-7, 12)

Translation 2: $(x, y) \rightarrow (x + 4, y - 6)$ R'(-9, 9) \rightarrow R'(-9 + 4, 9 - 6) = R'(-5, 3) S'(-7, 12) \rightarrow S'(-7 + 4, 12 - 6) = S'(-3, 6) After this lesson...

- I can reflect figures.
- I can perform compositions with reflections.
- I can identify line symmetry in polygons.

4.2 REFLECTIONS

- Reflection
 - Transformation that uses a line like a mirror to reflect an image.
 - That line is called Line of Reflection
 - *P* and *P'* are the same distance from the line of reflection
 - The line connecting P and P' is perpendicular to the line of reflection

• Graph a reflection of $\triangle ABC$ where A(1, 3), B(5, 2), and C(2, 1) in the line x = 2.

New points are A(3, 3), B(-1, 2), C(2, 1)

Coordinate Rules for Reflections

- Reflected in *x*-axis: $(a, b) \rightarrow (a, -b)$
- Reflected in *y*-axis: $(a, b) \rightarrow (-a, b)$
- Reflected in y = x: $(a, b) \rightarrow (b, a)$
- Reflected in y = -x: $(a, b) \rightarrow (-b, -a)$

Reflection Theorem

A reflection is an rigid motion.

• Graph $\triangle ABC$ with vertices A(1, 3), B(4, 4), and C(3, 1). Reflect $\triangle ABC$ in the lines y = -x and y = x.

y = -x: new points A(-3, -1), B(-4, -4), C(-1, -3) y = x: new points A(3, 1), B(4, 4), C(1, 3)

• The vertices of Δ*LMN* are *L*(−3, 3), *M*(1, 2), and *N*(−2, 1). Find the reflection of Δ*LMN* in the *y*-axis.

 $\begin{array}{l} (a, b) \rightarrow (-a, b) \\ L(-3, 3) \rightarrow L'(3, 3) \\ M(1, 2) \rightarrow M'(-1, 2) \\ N(-2, 1) \rightarrow N'(2, 1) \end{array}$

- Composition of Transformations
 - Two or more transformations combined into a single transformation
- Glide Reflection
 - Translation followed by reflection over a line parallel to the translation

• The vertices of $\triangle ABC$ are A(3, 2), B(-1, 3), and C(1, 1). Find the image of $\triangle ABC$ after the glide reflection.

Translation: $(x, y) \rightarrow (x, y - 4)$ **Reflection**: Over *y*-axis

New points after translation: A'(3, -2), B'(-1, -1), C'(1, -3) New points after reflection: A''(-3, -2), B''(1, -1), C''(-1, -3)

- Line symmetry
 - The figure can be mapped to itself by a reflection
 - The line of reflection is called Line of Symmetry
- Humans tend to think that symmetry is beautiful

• How many lines of symmetry does the object appear to have?

Flower: 4 lines of symmetry Sea Star: 5 lines of symmetry Goat: 1 line of symmetry After this lesson...

- I can rotate figures.
- I can perform compositions with rotations.
- I can identify rotational symmetry in polygons.

4.3 ROTATIONS

- Coordinate Rules for Counterclockwise Rotations about the Origin
- 90°: $(a, b) \rightarrow (-b, a)$
- 180°: $(a, b) \rightarrow (-a, -b)$
- 270°: $(a, b) \rightarrow (b, -a)$

If *E*(-3, 2), *F*(-3, 4), *G*(1, 4), and *H*(2, 2). Find the image for a 270° rotation about the origin.

 $\begin{array}{l} (a, b) \rightarrow (b, -a) \\ E(-3, 2) \rightarrow E'(2, 3) \\ F(-3, 4) \rightarrow F'(4, 3) \\ G(1, 4) \rightarrow G'(4, -1) \\ H(2, 2) \rightarrow H'(2, -2) \end{array}$

Graph *RS* with endpoints *R*(1, -3) and *S*(2, -6) and its image after the composition.
 Rotation: 180° about the origin Reflection: in the *y*-axis

Rotation: (a, b) \rightarrow (-a, -b) R(1, -3) \rightarrow R'(-1, 3) S(2, -6) \rightarrow S'(-2, 6)

Reflection: (a, b) → (-a, b) R'(-1, 3) → R"(1, 3) S'(-2, 6) → S"(2, 6)

- Rotational Symmetry
 - The figure can be mapped to itself by a rotation of 180° or less about the center of the figure
 - The center of rotation is called the **Center of Symmetry**

Note: the 45° is not a symmetry

Rhombus: 180° Octagon: 90°, 180° Triangle: none After this lesson...

- I can identify congruent figures.
- I can describe congruence transformations.
- I can use congruence transformations to solve problems.

4.4 CONGRUENCE AND TRANSFORMATIONS

 $\triangle ABC \cong \triangle PQR, \ \Delta DEF \cong \triangle STU; \ \triangle PQR \text{ is a translation 5 units right and 1 unit up of}$ $\triangle ABC. \ \triangle STU \text{ is a reflection of } \triangle DEF \text{ in the line } x = 1.$

4.4 CONGRUENCE AND TRANSFORMATIONS

- Congruence Transformation
 - Transformation with rigid motion
 - Preimage \cong image

90° rotation about the origin, followed by a translation 1 unit up

4.4 CONGRUENCE AND TRANSFORMATIONS

Use the figure below. The distance between line *k* and *m* is 1.6 cm.

- 1. The preimage is reflected in line *k*, then in line *m*. Describe a single transformation that maps the blue figure to the green.
- 2. What is the distance from *P* and *P*"?

- 1. Translation in the x direction
- 2. 2(1.6 cm) = 3.2 cm (Reflections in Parallel Lines Thrm)

Counterclockwise rotation of 160° about point P

After this lesson...

- I can identify dilations.
- I can dilate figures.
- I can solve real-life problems involving scale factors and dilations.

4.5 DILATIONS

- Dilation
 - Enlarge or reduce
 - Image is similar to preimage
 - Scale factor is k
 - If 0 < k < 1, then reduction
 - If *k* > 1, then enlargement

• The image point P' lies on \overrightarrow{CP} . The scale factor k is a positive number such that $k = \frac{CP'}{CP}$ and $k \neq 1$

• Scale factor is $\frac{\text{image}}{\text{preimage}}$

Scale

- Coordinate Rule for Dilations
 - $(x, y) \rightarrow (kx, ky)$
 - Where *k* is the scale factor

 Graph △PQR with vertices P(4, 6), Q(-4, 2), and R(2, -6) and its image after a dilation with a scale factor of 0.5.

 $\begin{array}{l} (x, y) \rightarrow (kx, ky) \\ P(4, 6) \rightarrow P'(0.5 \cdot 4, 0.5 \cdot 6) = P'(2, 3) \\ Q(-4, 2) \rightarrow Q'(0.5 \cdot -4, 0.5 \cdot 2) = Q'(-2, 1) \\ R(2, -6) \rightarrow R'(0.5 \cdot 2, 0.5 \cdot -6) = R'(1, -3) \end{array}$

- Draw and label ΔRST , then construct a dilation of ΔRST with *R* as the center of dilation and a scale factor of 3.
- 1. Draw $\triangle RST$, then draw rays \overrightarrow{RS} and \overrightarrow{RT}
- 2. Using a ruler, measure *RS*. Multiply by the scale factor. Using the ruler mark this length *RS*' on \overrightarrow{RS} . Repeat for the other rays.
- 3. Draw $\Delta R'S'T'$

• You are using a magnifying glass that shows the image of an object as three times the object's actual size. Determine the actual length of a spider when the image of the spider seen through the magnifying glass is 6.75 centimeters long.

204 #2, 4, 6, 8, 10, 14, 16, 18, 20, 22, 24, 26, 28, 34, 38, 50, 52, 55, 56, 59

 $k = 3 = \frac{image}{preimage}$ $3 = \frac{6.75}{preimage}$ $3 \cdot preimage = 6.75$ $preimage = 2.25 \ cm$

After this lesson...

- I can perform similarity transformations.
- I can describe similarity transformations.
- I can prove that figures are similar.

4.6 SIMILARITY AND TRANSFORMATIONS

4.6 SIMILARITY AND TRANSFORMATIONS

- Similar figures
 - Same shape; different sizes
- Similarity Transformation
 - Dilation or
 - Composition of dilation and another transformation

4.6 SIMILARITY AND TRANSFORMATIONS

• Graph $\triangle ABC$ with vertices A(12, -6), B(0, -3), and C(3, -9) and its image after the similarity transformation. **Reflection:** in the *y*-axis **Dilation:** $(x, y) \rightarrow (\frac{1}{3}x, \frac{1}{3}y)$

Reflection:
$$(x, y) \rightarrow (-x, y)$$

 $A(12, -6) \rightarrow A'(-12, -6)$
 $B(0, -3) \rightarrow B'(0, -3)$
 $C(3, -9) \rightarrow C'(-3, -9)$
Dilation: $(x, y) \rightarrow (\frac{1}{3}x, \frac{1}{3}y)$
 $A'(-12, -6) \rightarrow A''(\frac{1}{3}(-12), \frac{1}{3}(-6)) = A''(-4, -2)$
 $B'(0, -3) \rightarrow B''(\frac{1}{3}(0), \frac{1}{3}(-3)) = B''(0, -1)$
 $C'(-3, -9) \rightarrow C''(\frac{1}{3}(-3), \frac{1}{3}(-9)) = C''(-1, -3)$

Sample answer: reflection in the x-axis, followed by a dilation with a scale factor of 2