Geometry

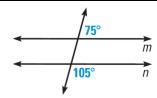
3.3 Proofs with Parallel Lines

Corresponding Angles Converse

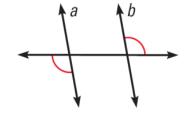
If 2 lines are cut by _____ so the ____ \angle s are \cong , then the lines are ||.

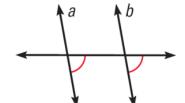
Alternate Interior Angles Converse

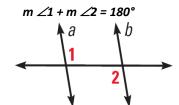
If 2 lines are cut by transversals, so the ________s are ______, then the lines are ||.


Alternate Exterior Angles Converse

If 2 lines are cut by transversals, so the $___$ are \cong , then the lines are $___$.


Consecutive Interior Angles Converse


If 2 lines are cut by transversals, so the ______ \(\alpha\) are supp., then the lines are _____.

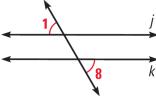

Is there enough information to conclude that $m \mid\mid n$?

Can you prove that the lines are parallel? Explain.

Transitive Property of Parallel Lines

If two lines are ______ to the same line, then they are _____ to each other.

Instructions for Paragraph proofs


Paragraph proofs

- The proof is written in ______.
- Still need to have the _____ and ____.

are ||.

Given: $\angle 4 \cong \angle 5$ Prove: $g \mid\mid h$

If you use the diagram at the right to prove the Alternate Exterior Angles Converse, what GIVEN and PROVE statements would you use?

Assignment: 138 #2, 4, 6, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30, 32, 35, 39, 41, 44, 45, 49 = 20 total