Algebra 2 by Richard Wright

Previous LessonTable of Contents Next Lesson

Are you not my student and
has this helped you?

0-01 Solve Linear Equations and Inequalities

Mr. Wright teaches the lesson.

Objectives:

SDA NAD Content Standards (2018): AII.4.1, AII.5.1

Golden Ruler. Credit: Pixabay/OpenClipart-Vectors

Golden Rule

Do unto others what you would have them do unto you.

Golden Rule of Algebra

Do unto one side what you have done to the other side.

Solve equations getting all of the desired variables on same side of the equation. Then get everything else away from the variable you are solving for. Usually you work from the most outside piece away from the variable. Whatever you do to one side of the equation, do unto the other side.

Example 1

Solve x + 3 = 7.

Solution

$$ \begin{array}{rll} x+3 & =7 & \\ x+3\color{red}{-3} & =7\color{red}{-3} & ←\text{Subtract 3 from both sides so } x \text{ is by itself} \\ x & =4 & \end{array} $$

Example 2

Solve 2x − 4 = 10.

Solution

$$ \begin{array}{rll} 2x-4 & =10 & \\ 2x-4\color{red}{+4} & =10\color{red}{+4} & ←\text{Add 4 to both sides} \\ 2x & =14 & \\ \frac{2x}{2} & =\frac{14}{2} & ←\text{Divide both sides by 2} \\ x & =7 & \end{array} $$

Example 3

Solve 3x − 1 = x + 5.

Solution

$$ \begin{array}{rll} 3x-1 & =x+5 & \\ 3x\color{red}{-x}-1 & =x\color{red}{-x}+5 & ←\text{Subtract } x \text{ to get all the } x \text{'s on the same side} \\ 2x-1 & =5 & ←\text{Combine like terms} \\ 2x-1\color{red}{+1} & =5\color{red}{+1} & ←\text{Add 1 to both sides} \\ 2x & =6 & \\ \frac{2x}{2} & =\frac{6}{2} & ←\text{Divide both sides by 2} \\ x & =3 & \end{array} $$

Solve Inequalities

Inequalities are like equations, but one side has a larger value than the other side. Solve inequalities like you do with equations. The one difference is if you multiply or divide both sides by a negative, then flip the inequality sign.

Example 4

Solve −2(x − 4) > 12.

Solution

$$ \begin{array}{rll}-2\left(x-4\right)&>12&\\\frac{-2\left(x-4\right)}{-2}&<\frac{12}{-2}&\ \ \ \gets\mathrm{Divide\ both\ sides\ by\ 2\ because\ it\ is\ the\ most\ outside\ piece\ from\ the\ }x\\&&\ \ \ \ \mathrm{Flip\ the\ inequality\ because\ divided\ by\ negative}\\x-4&<-6&\\x-4+4&<-6+4&\ \ \ \ \gets\mathrm{Add\ 4\ to\ each\ side}\\x&<-2&\\\end{array} $$

Example 5

Solve 3(x + 5) < x − 8.

Solution

$$ \begin{array}{rll} 3(x+5) & < x-8 & \\ 3x+15 & < x-8 & \gets\mathrm{Distribute\ the\ 3}\\3x-x+15& < x-x-8&\gets\mathrm{Subtract\ }x\mathrm{\ from\ both\ sides}\\2x+15& < -8&\\2x+15-15&<-8-15&\gets\mathrm{Subtract\ }x\mathrm{\ from\ both\ sides}\\2x& < -23&\\\frac{2x}{2}& < -\frac{23}{2}&\gets\mathrm{Divide\ both\ sides\ by\ 2}\\x& < -\frac{23}{2}&\\\end{array} $$

Rewrite Equations

Sometimes there is more than one variable. Treat the unwanted variable as a number and solve just like you solved the other equations and inequalities.

Example 6

Solve for h. \(A_1 < \frac{1}{2}\left(b_1+b_2\right)h < A_2\)

Solution

$$ \begin{array}{rcll} A_1 < & \frac{1}{2}\left(b_1+b_2\right)h & < A_2& \\ \color{red}{2\cdot} A_1< & \color{red}{2\cdot}\frac{1}{2}\left(b_1+b_2\right)h & < \color{red}{2\cdot} A_2 & \gets\mathrm{Multiply\ all\ parts\ by\ 2\ to\ remove\ }\frac{1}{2} \\ 2A_1 < & \left(b_1+b_2\right)h & < 2A_2 & \\ \frac{2A_1}{\color{red}{b_1+b_2}} < & \frac{\left(b_1+b_2\right)h}{\color{red}{b_1+b_2}} & < \frac{2A_2}{\color{red}{b_1+b_2}} & \gets\mathrm{Divide\ by\ }\left(b_1+b_2\right) \\ \frac{2A_1}{b_1+b_2} < & h & < \frac{2A_2}{b_1+b_2} & \end{array} $$

Example 7

Solve for . \(P=2\ell+2w\).

Solution

$$ \begin{array}{rll} P & =2\ell+2w & \\ P\color{red}{-2w} & =2\ell+2w\color{red}{-2w} & \gets\mathrm{Subtract\ }2w\mathrm{\ from\ both\ sides\ to\ get\ l\ by\ itself} \\ P-2w & =2\ell & \\ \frac{P-2w}{\color{red}{2}} & =\frac{2\ell}{\color{red}{2}} & \gets\mathrm{Divide\ both\ sides\ by\ 2} \\ \frac{P-2w}{2} & =\ell & \\ \ell & =\frac{P-2w}{2} & \gets\mathrm{Write\ the\ equation\ with\ the\ chosen\ variable\ on\ the\ left} \end{array} $$

Example 8

Solve for z. 2xz + 5z < 15.

Solution

$$ \begin{array}{rll} 2xz+5z & < 15 & \\ z\left(2x+5\right) & < 15 & \gets\mathrm{Distributive\ property} \\ \frac{z\left(2x+5\right)}{\color{red}{2x+5}} & < \frac{15}{\color{red}{2x+5}} & \gets\mathrm{Divide\ both\ sides\ by\ }2x+5\mathrm{\ to\ get\ the\ }z\mathrm{\ by\ itself} \\ z & < \frac{15}{2x+5} & \end{array} $$

Practice Exercises

    Solve the equation. Check your solution.

  1. x − 8 = 17
  2. 4x + 15 = 20
  3. \(\frac{1}{2}x-\frac{5}{2}=6\)
  4. 5x + 2 = −3x + 4
  5. 15 = 2(x + 5)
  6. −3(x − 4) = 2(x + 10)
  7. \(\frac{1}{3}\left(x+5\right)=\frac{5}{6}\)
  8. Solve the inequality.

  9. 2x − 3 < 0
  10. 3x > 5x − 10
  11. −5x + 15 > 15
  12. 1 < 2(x + 12)
  13. 2 < 2x − 9 < 18
  14. −3 < −6x < 21
  15. 3x < 6 or 5x + 1 > 16
  16. Solve the equation or formula for the given variable.

  17. Solve for r: C = 2πr
  18. Solve for b: \(A=\frac{1}{2}bh\)
  19. Solve for C: \(F=\frac{9}{5}C+32\)
  20. Solve for y. Then find the value of y when x = 3. 3x − 6y = 18
  21. Solve for c. Then find the value of c when a = 3 and b = 4. ac − 2c = b
  22. Solve for z. Then find the value of z when w = 5. 3w + z < 20
  23. Solve for Q. Then find the value of Q when R = 0. \(\frac{1}{2}\left(Q+3R\right)-2Q>6R-9\)
  24. Mixed Review: Write an expression to answer the question.

  25. You have $523 in your savings account. Then deposit D dollars. What is your new balance?
  26. You buy C bags of candy for $4.99 each. How much money did you spend?
  27. A car travels m miles, stops, then travels n more miles. How far did the car travel in total?
  28. There are s students in the class who turned in 21 papers. How many students did not turn in a paper?

Answers

  1. 25
  2. \(\frac{5}{4}\)
  3. 17
  4. \(\frac{1}{4}\)
  5. \(\frac{5}{2}\)
  6. \(-\frac{8}{5}\)
  7. \(-\frac{5}{2}\)
  8. \(x < \frac{3}{2}\)
  9. x < 5
  10. x < 0
  11. \(x > -\frac{23}{2}\)
  12. \(\frac{11}{2} < x < \frac{27}{2}\)
  13. \(-\frac{7}{2} < x < \frac{1}{2}\)
  14. x < 2 or x > 3
  15. \(r=\frac{C}{2\pi}\)
  16. \(b=\frac{2A}{h}\)
  17. \(C=\frac{5}{9}\left(F-32\right)\)
  18. \(y=\frac{1}{2}x-3; -\frac{3}{2}\)
  19. \(c=\frac{b}{a-2}\); 4
  20. z < 20 − 3w; z < 5
  21. Q < −3R + 6; Q < 6
  22. 523 + D
  23. $4.99C
  24. m + n
  25. s − 21