Algebra 2 by Richard Wright

Previous LessonTable of Contents

Are you not my student and
has this helped you?

4-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers.

    4-01

    Simplify.

  1. (2x2 + 3x − 4) + (−2x2 − 5x + 7)
  2. (5x2 − 4) − (6x2 + 4x + 17)
  3. (2x2 + 3x − 1)(x + 4)
  4. (2x + 1)2
  5. 4-02

    Factor.

  6. x3 + 6x2 + 5x
  7. 4x3 + 2x2 + 16x + 8
  8. Solve by factoring.

  9. 3x3 + 15x2 + 18x = 0
  10. 2x3 + 3x2 − 8x = 12
  11. 4-03

    Divide with long division.

  12. (6x3 + 13x2 + 3x − 2) ÷ (2x2 + 3x − 1)
  13. (9x3 + 6x2 − 23x + 10) ÷ (3x − 2)
  14. Divide with synthetic division.

  15. (3x3 + 7x2 − 14x + 20) ÷ (x + 4)
  16. (2x4 + 3x2 + 5x − 7) ÷ (x − 3)
  17. 4-04

    Use the remainder theorem to evaluate f(x) at the given x value.

  18. 3x3 − 2x2 + x + 18; x = 2
  19. x4 − 5x2 + 3x −20; x = −3
  20. Determine whether the given binomial is a factor of f(x). Show work other than graphing.

  21. f(x) = x3x2 − 14x + 24; (x + 4)
  22. f(x) = 6x3 + x2 − 5x − 2; (x − 1)
  23. 4-05

    List the possible rational zeros of the function.

  24. x4 + 2x2 − 4x + 16
  25. 2x3 − 71x2 + 40x − 8
  26. Find all the zeros of the function.

  27. f(x) = 6x3 − 5x2 − 12x − 4
  28. f(x) = x4x3 + 2x2 − 4x − 8

Answers

  1. −2x + 3
  2. x2 − 4x − 21
  3. 2x3 + 11x2 + 11x − 4
  4. 4x2 + 4x + 1
  5. x(x + 1)(x + 5)
  6. 2(2x + 1)(x2 + 4)
  7. −3, −2, 0
  8. −2, −3/2, 2
  9. 3x + 2
  10. 3x2 + 4x − 5
  11. 3x2 − 5x + 6 + \(\frac{-4}{x+4}\)
  12. 2x3 + 6x2 + 21x + 68 + \(\frac{197}{x-3}\)
  13. 36
  14. 7
  15. Yes
  16. Yes
  17. ±1, ±2, ±4, ±8, ±16
  18. ±1/2, ±1, ±2, ±4, ±8
  19. −2/3, −1/2, 2
  20. −1, 2, ±2i